* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PowerPoint file of HBM_part 2
Canonical quantum gravity wikipedia , lookup
Quantum tunnelling wikipedia , lookup
Uncertainty principle wikipedia , lookup
Quantum potential wikipedia , lookup
Dirac equation wikipedia , lookup
Minimal Supersymmetric Standard Model wikipedia , lookup
Strangeness production wikipedia , lookup
An Exceptionally Simple Theory of Everything wikipedia , lookup
Bell's theorem wikipedia , lookup
Photon polarization wikipedia , lookup
Future Circular Collider wikipedia , lookup
Technicolor (physics) wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Probability amplitude wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Electron scattering wikipedia , lookup
Old quantum theory wikipedia , lookup
Renormalization wikipedia , lookup
Path integral formulation wikipedia , lookup
Second quantization wikipedia , lookup
Wave packet wikipedia , lookup
Quantum field theory wikipedia , lookup
Double-slit experiment wikipedia , lookup
Quantum logic wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
Nuclear structure wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Quantum state wikipedia , lookup
Search for the Higgs boson wikipedia , lookup
Wave function wikipedia , lookup
Quantum entanglement wikipedia , lookup
ATLAS experiment wikipedia , lookup
Boson sampling wikipedia , lookup
Higgs mechanism wikipedia , lookup
History of quantum field theory wikipedia , lookup
Renormalization group wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Scalar field theory wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Identical particles wikipedia , lookup
Canonical quantization wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Grand Unified Theory wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
A simple model of fundamental physics
By J.A.J. van Leunen
Part two
http://www.e-physics.eu
How to use
Quaternionic Distributions
and
Quaternionic Probability Density Distributions
The HBM is a quaternionic model
 The HBM concerns quaternionic physics rather than
complex physics.
 The peculiarities of the quaternionic Hilbert model are
supposed to bubble down to the complex Hilbert space
model and to the real Hilbert space model
 The complex Hilbert space model is considered as an
abstraction of the quaternionic Hilbert space model
 This can only be done properly in the right
circumstances
3
Continuous
Quaternionic Distributions
 Quaternions
𝑎 = 𝑎0 + 𝒂
c = 𝑎𝑏 = 𝑎0 𝑏0 − 𝒂, 𝒃 +
𝑎0 𝒃 + 𝑏0 𝒂 + 𝒂 × 𝒃
 Quaternionic distributions
Two
equations
Differential equation
g = 𝛻𝑓 = 𝛻0 𝑓0 − 𝛁, 𝒇 +
𝛻0 𝒇 + 𝛁𝑏0 + 𝛁 × 𝒃
Three
kinds
𝜙 = 𝛻𝜓 = 𝑚 𝜑
{
𝑔0 = 𝛻0 𝑓0 − 𝛁, 𝒇
𝐠 = 𝛻0 𝒇 + 𝛁𝑏0 + 𝛁 × 𝒃
Differential
Coupling
Continuity
}
equation
4
Field equations
 𝜙 = 𝛻𝜓
 𝜙0 = 𝛻0 𝜓0 − 𝛁, 𝜓
 𝝓 = 𝛻0 𝜓 + 𝛁𝜓0 + 𝛁 × 𝜓
Spin of a field:
𝜮𝑓𝑖𝑒𝑙𝑑 =
𝕰 × 𝝍 𝑑𝑉
𝑉
 𝕰 ≡ 𝛻0 𝝍 + 𝜵𝜓0
 𝕭≡𝜵×𝝍
 𝝓=𝕰+𝕭
𝐸≡ 𝜙 =
𝜙0 𝜙0 + 𝝓, 𝝓
= 𝜙0 𝜙0 + 𝕰, 𝕰 + 𝕭, 𝕭 + 𝟐 𝕰, 𝕭
Is zero
?
5
QPDD’s
 Quaternionic distribution
 𝑓 = 𝑓0 + 𝒇
Scalar
field
Vector
field
 Quaternionic Probability Density Distribution
 𝜓 = 𝜓0 + 𝝍 = 𝜌0 + 𝜌0 𝒗
Density
distribution
Current density
distribution
6
Coupling equation
Differential
𝜙 = 𝛻𝜓 = 𝑚𝜑
Differential Continuity Coupling
𝜙 = 𝛻𝜓
𝛻𝜓 = 𝜙
𝛻𝜓 = 𝑚𝜑
𝜓 = 𝜑
 Integral
𝜓
2
𝑉
𝜑
2
𝑑𝑉 = 1
𝑚 = total energy
= rest mass +
kinetic energy
𝑉
𝜙
𝑉
𝑑𝑉 =
𝜓 and φ
are normalized
2
𝑑𝑉 = 𝑚2
Flat space
7
Coupling in Fourier space
𝛻𝜓 = 𝜙 = 𝑚 𝜑
ℳ𝜓 = 𝜙 = 𝑚 𝜑
𝜓|ℳ 𝜓 = 𝑚 𝜓|𝜑
ℳ = ℳ0 + 𝞛
ℳ0 𝜓0 − 𝞛, 𝝍 = 𝑚 𝜑0
ℳ0 𝝍 + 𝞛𝜓0 + 𝞛 × 𝝍 = 𝑚 𝝋
2
𝜙 𝑑𝑉 =
𝑉
ℳ𝜓
𝑉
2
𝑑 𝑉 = 𝑚2
In general 𝜓 is not an
eigenfunction of operator
ℳ.
That is only true when 𝜓
and 𝜑 are equal.
For elementary particles
they are equal
apart from their difference
in discrete symmetry.
8
Dirac equation
Approximately
flat space
𝛻0 𝜓 + 𝛁𝛂 𝜓 = 𝑚𝛽 𝜓
 𝛂 and 𝛽 are Dirac matrices
 Spinor 𝜓
 Split
𝜓𝑅 = 𝜓𝐿∗ = 𝜓0 + 𝝍
• 𝛻0 𝜓𝑅 + 𝛁𝜓𝑅 = 𝑚𝜓𝐿
• 𝛻0 𝜓𝐿 − 𝛁𝜓𝐿 = 𝑚𝜓𝑅
 In quaternion format
• 𝛻𝜓 = 𝑚𝜓 ∗
• 𝛻 ∗ 𝜓 ∗ = 𝑚𝜓
Qpattern
QPDD
9
Dirac matrices
𝛻0 𝜓 + 𝛁𝛂 𝜓 = 𝑚𝛽 𝜓
𝛼1 ≡
0
−𝒊
𝒊
0
𝒊 ⟼ 𝜎1 ≡
0
1
1
0
𝛼2 ≡
0 𝒋
−𝒋 0
𝒋 ⟼ 𝜎2 ≡
0 −𝑖
𝑖 0
0 𝒌
𝛼3 ≡
−𝒌 0
𝒌 ⟼ 𝜎3 ≡
1 0
0 −1
0 1
𝛽≡
1 0
1 ⟼𝐼≡
1 0
0 1
10
Palestra
 Curved embedding continuum
 Represents universe
Embedded in
continuum
𝑄𝑝𝑎𝑡𝑐ℎ
Collection of
Qpatches
The Palestra is the place where everything happens
11
Sign flavors
 Coupling equation
 𝛻𝜓 𝑥 = 𝑚 𝜓 𝑦
 𝛻𝜓 𝑥 ∗ = 𝑚 𝜓 𝑦 ∗
 Coupling occurs between
pairs
 {𝜓 𝑥 , 𝜓 𝑦 }
 Colors x, y
 N, R, G, B, R, G, B, W
 Right and left handedness
 R,L
Sign flavors
𝝍⓪ 𝑁 𝐑
𝝍① 𝑅 𝐋
Imaginary
part
𝝍② 𝐺 𝐋
𝝍③ 𝐵 𝐋
𝝍④ 𝐵 𝐑
𝝍⑤ 𝐺 𝐑
𝝍⑥ 𝑅 𝐑
𝝍⑦ 𝑁 L
𝝍⓪
is the
Reference
QPDD
Discrete
symmetries
12
Bundles of sign flavors
 Mostly continuous functions are functions that
are continuous apart from a finite number of
singular points
 Mostly continuous quaternionic functions exist in
16 different sign flavors
 Mostly continuous quaternionic functions exist in
bundles that contains all sign flavors of that
function
 Such bundles are called sign flavor bundles.
13
Reference sign flavor
 The curvature of the parameter space of the sign flavor
bundle is flat
 The parameter space is spanned by a quaternionic
number system
 Quaternionic number systems exist in 16 sign flavors
 The reference version of the sign flavor bundle has the
same sign flavor as the parameter space of the bundle
has
14
Space Hypotheses
 Our living space can be represented by
a field that is represented by a sign
flavor bundle
 That field is the Palestra
 Everything in universe consists of
features of the Palestra
15
Constituents of the Palestra
 Elementary particles are recurrent
singularities in the Palestra that
represent very short lived couplings of
two versions that belong to the sign
flavor bundle.
 Other fields are representing averaged
effects or oscillations of the Palestra.
16
Fermions and bosons
 One of the sign flavors of the Palestra
is the reference sign flavor
 Coupling of a sign flavor to the
reference flavor produces fermions
 Other couplings produce bosons
17
Alternative of the Higgs
mechanism
 The bundle takes care of the fact that
space curvature couples between
fermions and bosons
 This effect implements the action that
is supposed to be implemented by the
Higgs mechanism
18
Palestra and particle
movement path
 The sign flavor determines the sign of the Frenet-
Serret frame vectors.
 The embedded continuum and the embedded
particle have different sign flavors.
 This difference is the reason that the embedded
particle and the embedding continuum move in
different directions.
 That is why the embedding process causes
singularities in the embedding continuum
19
Duration
 At any point in the Palestra and in any direction a
path can be started
 Also Qpatches that represent particles follow such
paths
 In the Palestra the “length” of the quaternionic path is
the coordinate time duration
𝑑
𝑠 𝑑 =
𝑑
𝑑℘
0
=
0
𝑑℘
𝑑𝜏
𝑑𝜏
 𝑑 is the duration in proper time ticks. 𝜏 is the
progression parameter. It equals proper time. 𝑠 is the
coordinate time.
20
Tangent and principle normal
 We investigate constant speed curves in the imaginary Palestra.
 𝓡 is the imaginary part of ℘.
𝑑℘
𝑑𝑠
𝑻=
𝑑℘
𝐼𝑚
𝑑𝑠
𝐼𝑚
𝑑𝓡
= 𝑑𝑠
𝑑𝕽
𝑑𝑠
𝑑𝑻
𝑵 = 𝑑𝑠
𝑑𝑻
𝑑𝑠
𝑻 is the tangent unit vector. 𝑵 is the principle normal unit vector.
21
Binormal unit vector
 Since 𝑻 = 1 are 𝑵 and 𝑻 perpendicular.
𝑩=𝑻×𝑵
 𝑩 is the binormal unit vector
 The sign of T, N, and B depends on the discrete
symmetry set of the involved field
22
Path characteristics
𝑑𝑻
= 𝜅𝑵
𝑑𝑠
𝑑𝑵
= −𝜅𝑻 + 𝜏𝑩
𝑑𝑠
𝑑𝑩
= −𝜏𝑵
𝑑𝑠
𝜅 is the curvature. 𝜏 is the torque.
23
Constant speed path
 Since massless information carriers, such as photons move
with constant speed c, they travel along a constant speed
curve.
 Also particles can move along a constant speed curve
 The infinitesimal particle path step is the sum of all hops that
constitute the micro-path.
 The hops can also be divided in three mutually perpendicular
steps
The major step // tantrix
The intermediate step // principal normal
The minor step // binormal
The signs of these sub-steps are determined by the sign flavor
24
Entanglement
25
Entanglement
 The correlation mechanism manages entanglement
 At every progression instant the quantum state
function of an entangled system equals the
superposition of the quantum state functions of its
components
Entangled systems obey the swarming conditions
For entangled systems the coupling equation holds
Φ = 𝛻𝜓 = 𝑚 𝜑
𝜓 and 𝜑 are normalized
Entanglement acts as a binding mechanism
26
Binding
 The fact that superposition coefficients define internal
movements can best be explained by reformulating the
definition of entangled systems.
 Composites that are equipped with a quantum state
function whose Fourier transform at any progression
step equals the superposition of the Fourier
transforms of the quantum state functions of its
components form an entangled system.
 Now the superposition coefficients can define internal
displacements. As a function of progression they define
internal oscillations.
27
Geoditches
 In an entangled system the micro-paths of the constituting
elementary particles are folded along the internal
oscillation paths.
Each of the corresponding step stones causes a local pitch
that describes the temporary (singular) curvature of the
embedding continuum.
These pitches quickly combine in a ditch that like the
micro-path folds along the oscillation path.
These ditches form special kinds of geodesics that we call
“Geoditches”.
The geoditches explain the binding effect of entanglement.
28
Pauli principle
 If two components of an entangled (sub)system that have the
same quantum state function are exchanged, then we can take
the system location at the center of the location of the two
components. Now the exchange means for bosons that the
(sub)system quantum state function is not affected:
 For all α and β{αφ(-x)+βφ(x)=αφ(x)+βφ(-x)}⇒φ(-x)=φ(x)
 and for fermions that the corresponding part of the (sub)system
quantum state function changes sign.
 For all α and β{αφ(-x)+βφ(x)=-αφ(x)-βφ(-x)}⇒φ(-x)=-φ(x)
 This conforms to the Pauli principle.
29
Non-locality
 Action at a distance cannot be caused via information
transfer
Non-locality already plays a role inside the realm of
separate elementary particles.
Hopping along the step stones occurs much faster than
the information carrying waves can follow.
Similar features occur inside entangled systems.
Due to the exclusion principle, observing the state of a
sub-module has direct (instantaneous) consequences
for the state of other sub-modules.
30
Focus
 If in an entangled system the focus is on the system,
then the whole system acts as a swarm and the
correlation mechanism causes hopping along ALL step
stones that are involved in the system
 When the focus shifts to one or more of the
constituents, then the entanglement gets at least
partly broken
 After that the separated particles and the resulting
entangled system act as separate swarms
31
Binding
32
Binding mechanism
 When a step stone is involved in an entangled system,
then it produces a singularity at the instance that it is
used.
 The influence of that singularity spreads over the
embedding continuum in the form of a wave front that
folds and thus curves this continuum
 The traces of these Qtargets mark paths where the
wave fronts dig pitches into the continuum that
combine into channels that act as geodesics.
33
The effect of modularization
34
Modularization
 Modularization is a very powerful influencer.
 Together with the corresponding encapsulation it
reduces the relational complexity of the ensemble of
objects on which modularization works.
 The encapsulation keeps most relations internal to the
module.
 When relations between modules are reduced to a few
types , then the module becomes reusable.
 If modules can be configured from lower order
modules, then efficiency grows exponentially.
35
Modularization
 Elementary particles can be considered as the lowest
level of modules.
All composites are higher level modules.
Modularization uses resources efficiently.
When sufficient resources in the form of reusable
modules are present, then modularization can reach
enormous heights.
On earth it was capable to generate intelligent
species.
36
Complexity
 Potential complexity of a set of objects is a measure
that is defined by the number of potential relations
that exist between the members of that set.
 If there are n elements in the set,
then there exist n·(n-1) potential relations.
 Actual complexity of a set of objects is a measure that
is defined by the number of relevant relations that
exist between the members of the set.
 Relational complexity is the ratio of the number of
actual relations divided by the number of potential
relations.
37
Relations and interfaces
 Modules connect via interfaces.
 Relations that act within modules are hidden from the
outside world of the module.
 Interfaces are collections of relations that are used by
interactions.
 Physics is based on relations.
 Quantum logic is a set of axioms that restrict the
relations that exist between quantum logical
propositions.
38
Types of physical interfaces
 Interactions run via (relevant) relations.
 Inbound interactions come from the past.
 Outbound interactions go to the future.
 Two-sided interactions are cyclic.
 They take multiple progression steps.
 They are either oscillations or rotations of the interactor.
 Cyclic interactions bind the corresponding modules
together.
39
Modular systems
 Modular (sub)systems consist of connected modules.
 They need not be modules.
 They become modules when they are encapsulated
and offer standard interfaces that makes the
encapsulated system a reusable object.
 All composites are modular systems
40
Binding in sub-systems
 Let 𝜓 represent the renormalized superposition of the
involved distributions.
 𝛻𝜓 = 𝜙 = 𝑚 𝜑
 𝑉 𝜓 2 𝑑𝑉 = 𝑉 𝜑 2 𝑑𝑉 = 1
 𝑉 𝜙 2 𝑑𝑉 = 𝑚2
 𝑚 is the total energy of the sub-system
 The binding factor is the total energy of the sub-
system minus the sum of the total energies of the
separate constituents.
41
Random versus intelligent design
 At lower levels of modularization nature designs
modular structures in a stochastic way.
 This renders the modularization process rather slow.
 It takes a huge amount of progression steps in order to
achieve a relatively complicated structure.
 Still the complexity of that structure can be orders of
magnitude less than the complexity of an equivalent
monolith.
 As soon as more intelligent sub-systems arrive, then
these systems can design and construct modular
systems in a more intelligent way.
 They use resources efficiently.
 This speeds the modularization process in an enormous way.
42
The noise of low dose imaging
Low dose X-ray imaging
Film of cold cathode emission
43
Gamma quanta noise
Low dose X-ray image of the moon
44
Shot noise
45
Large scale fluid dynamics
46
Physical fields-1
 SHF wave modulations
 Photon
𝛻𝜓 = 0
 Gluon
𝛻2𝜓 = 0
}
harmonic
𝛻𝜓 = 𝑚𝜑
Energy quanta
𝑛𝑖 𝑒𝑖 𝜓𝑖
𝑖
𝑒𝑖 = ±𝑒
 SHF wave potentials
 Electromagnetic field
 Gravitation field
𝑛𝑖 𝑚𝑖 𝜑 𝑖
𝑖
47
Physical fields-2
 Fields from step stone distributions
 Scalar step stone density distribution &
Vector hop density distribution
 Quaternionic quantum state function
 QPDD
Quaternionic Probability Density Distributions
Quaternionic distributions
Charges are preserved
𝛻𝜓 = 𝑚𝜑
48
Inertia-1
 Inertia is implemented via the embedding
continuum
 The embedding continuum is formed by a
curved background field that forms our
living space
49
Omnipresent Background Field
All particles emit a contribution to
the omnipresent background field
The largest contribution to the
omnipresent background field is
delivered by the set of most
distant particles
50
Inertia-2
Potential fields of
distant particles
 Φ0 =
𝑉
𝜓 dV
In a uniform background:
𝜓 = 𝜌0 𝑟 ; 𝜌0 is constant
Everywhere present
background field
𝜌0
 Φ0 =
𝐺=
𝑉
−𝑐 2 Φ
𝜌0 𝒗
𝑟
dV = 𝜌0
1
𝑉
𝑟
dV = 2π𝑅2 𝜌0
(Dennis Sciama, The Origin of Inertia)
; 𝚽 = Φ0 𝒗
𝑐
 𝕰 = 𝛻𝟎 𝚽 + 𝛁Φ0 = 𝚽 + 𝛁Φ0 = Φ0 𝒗
𝑐
𝚽=
𝑉
𝑐𝑟
dV = Φ 𝒗
𝑐
+ 𝛁Φ0
51
Inertia-3
 Φ0 is a scalar background field
 𝜱 is a vector background field
 𝐺 is gravitational constant
 𝕰 = Φ0 𝒗 𝑐 + 𝛁Φ0
 𝕰 ≈ Φ0 𝒗
= 𝐺𝒗
 Acceleration goes together with an extra field 𝕰
 This field counteracts the acceleration
𝑐
52
Inertia-4
 Starting from coupling equation
 𝛻𝜓 = 𝑚𝜑
 𝜓 = χ + χ0 𝒗
 χ represents particle at rest
 𝜓0 = χ0
Small
 𝝍 = χ + χ0 𝒗
 𝛻0 𝝍 = χ0 𝒗 = 𝑚𝝋 − 𝜵𝜓0 − 𝜵× 𝝍
 𝕰 ≡ 𝛻0 𝝍 + 𝜵𝜓0
Represents influence
of distant particles
53
Continuity equation
 Balance equation
 Total change within V
= flow into V + production inside V
𝑑
𝑑𝜏 𝑉
𝜌0 𝑑𝑉 =
𝛻𝜌
𝑉 0 0
𝑑𝑉 =
𝒗
𝒏𝜌0
𝑆
𝑐
𝑉
𝑑𝑆 +
𝛁, 𝝆 𝑑𝑉 +
𝑠
𝑉 0
𝑠
𝑉 0
𝑑𝑉
𝑑𝑉
Gauss
 𝝆 = 𝜌0 𝒗/𝑐
 𝜌 = 𝜌0 + 𝝆
 𝑠 = 𝛻𝜌
 𝑠0 = 2𝛻0 𝜌0 − 𝒗 𝑞 , 𝛁𝜌0 − 𝛁, 𝒗 𝜌0
 𝒔 = 𝛻0 𝒗 + 𝛁𝜌0 +𝜌0 𝛁 × 𝒗 − 𝒗 × 𝛁𝜌0
54
Inversion surfaces
𝑑
𝑑𝜏 𝑉
𝑉
𝜌 𝑑𝑉 +
𝛻 𝜌 𝑑𝑉 =
 The criterion
𝑆
𝑉
𝒏𝜌 𝑑𝑆 =
𝑉
𝑠 𝑑𝑉
𝑠 𝑑𝑉
𝑆
𝒏𝜌 𝑑𝑆=0 divides universe in
compartments
Inversion surface
55
Compartments
universe
Huge
BH
Black holes
Huge BH ⇔ s tart of new episode
BH ⇔ densest packaging
Merge
Compartments
Never ending story
56
History of Cosmology
 Black hole represents natal state of compartment
 Black holes suck all mass from their compartment
 An instable passivized huge black hole represents start
of new episode of its compartment
 Driving force is enormous mass present outside
compartment ⇒ expansion
 Whole universe is affine space
 Result is never ending story
57
Gravitation
 The Palestra is a curved space
 𝒫𝑏𝑙𝑢𝑟𝑟𝑒𝑑 = ℘𝑠ℎ𝑎𝑟𝑝 ∘ 𝒮𝑠𝑝𝑟𝑒𝑎𝑑
𝜈
 𝑑𝑠 𝑥 = 𝑑𝑠 𝑥 𝑒𝜈 = 𝑑℘ =
 𝑞 𝜇 is quaternion
c dτ
dr
𝜕℘
𝑑𝑥𝜇 = 𝑞 𝜇 𝑥 𝑑𝑥𝜇
𝜇=0…3 𝜕𝑥𝜇
16 partial derivatives
 𝑐 2 𝑑𝑡 2 = 𝑑𝑠 𝑑𝑠 ∗ = 𝑑𝑥02 + 𝑑𝑥12 +𝑑𝑥22 +𝑑𝑥32
 𝑑𝑥02 = 𝑑𝜏 2 = 𝑐 2 𝑑𝑡 2 − 𝑑𝑥12 −𝑑𝑥22 −𝑑𝑥32
 ∆𝑠𝑓𝑙𝑎𝑡 = ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3
 ∆𝑠℘ = 𝑞 0 ∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞 2 ∆𝑥2 + 𝑞 3 ∆𝑥3
Pythagoras
Minkowski
Flat space
Curved space
58
Metric
 𝑑℘ is a quaternionic metric
 It is a linear combination of 16 partial derivatives
 𝑑℘ =
𝜕℘
𝑑𝑥𝜇
𝜕𝑥
𝜇=0…3 𝜇
=
𝜈=0,…3
= 𝑞 𝜇 𝑥 𝑑𝑥𝜇
𝜕℘𝜈
𝑒𝜈
𝑑𝑥𝜇 =
𝜕𝑥𝜇
𝜇=0…3
𝜇
𝑒𝜈 𝑞𝜈 𝑑𝑥𝜇
𝜈=0,…3
𝜇=0…3
 Avoids the need for tensors
59
The primary building blocks
60
Sign flavors
 Coupling equation
 𝛻𝜓 𝑥 = 𝑚 𝜓 𝑦
 𝛻𝜓 𝑥 ∗ = 𝑚 𝜓 𝑦 ∗
 Coupling occurs between
pairs
 {𝜓 𝑥 , 𝜓 𝑦 }
 Colors x, y
 N, R, G, B, R, G, B, W
 Right and left handedness
 R,L
Sign flavors
𝝍⓪ 𝑁 𝐑
𝝍① 𝑅 𝐋
Imaginary
part
𝝍② 𝐺 𝐋
𝝍③ 𝐵 𝐋
𝝍④ 𝐵 𝐑
𝝍⑤ 𝐺 𝐑
𝝍⑥ 𝑅 𝐑
𝝍⑦ 𝑁 L
𝝍⓪
is the
Reference
QPDD
Discrete
symmetries
61
Spin
 HYPOTHESIS : Spin relates to the fact whether the
coupled QPDD is the reference Qpattern 𝝍⓪ .
 Each generation has its own reference QPDD.
 Fermions couple to the reference QPDD 𝝍⓪ .
 Fermions have half integer spin.
 Bosons have integer spin.
 The spin of a composite equals the sum of the spins of
its components.
62
Sign of spin
 The micro-path can be walked in two directions
 This determines the sign of spin
63
Electric charge
 HYPOTHESIS : Electric charge depends on the
number of dimensions in which the discrete symmetry
of Qpattern elements differ from the discrete
symmetry of the embedding field.
 Each sign difference stands for one third of a full
electric charge.
 Further it depends on the fact whether the handedness
differs.
 If the handedness differs then the sign of the count is
changed as well.
64
Color charge
 HYPOTHESIS : Color charge is related to the direction of the
anisotropy of the considered QPDD with respect to the reference
QPDD.
The anisotropy lays in the discrete symmetry of the imaginary parts.
The color charge of the reference QPDD is white.
The corresponding anti-color is black.
The color charge of the coupled pair is determined by the colors of its
members.
 All composite particles are black or white.
 The neutral colors black and white correspond to isotropic QPPDs.
 Currently, color charge cannot be measured.
 In the Standard Model the existence of color charge is derived via the
Pauli principle.
65
Total energy
 Mass is related to the coupling factor of the involved
QPPDs.
It is directly related to the square root of the volume
integral of the square of the local field energy 𝐸.
Any internal kinetic energy is included in 𝐸.
The same mass rule holds for composite particles.
The fields of the composite particles are dynamic
superpositions of the fields of their components.
66
Computing total energy
 Let 𝜓 represent the quantum state function of the
particle
 𝛻𝜓 = 𝜙 = 𝑚 𝜑
 𝑉 𝜓 2 𝑑𝑉 = 𝑉 𝜑 2 𝑑𝑉 = 1
 𝑉 𝛻𝜓 2 𝑑𝑉 = 𝑉 𝜙 2 𝑑𝑉 = 𝑚2
 𝑚 is the total energy of the particle
67
Leptons
Pair
s-type
e-charge c-charge
{𝜓 ⑦ , 𝜓 ⓪ }
fermion
-1
{𝜓 ⓪ , 𝜓 ⑦ }
Antifermion
+1
Handed
ness
SM Name
N
LR
electron
W
RL
positron
68
Quarks
Pair
s-type
e-charge
c-charge
Handedness
SM Name
{𝜓 ① , 𝜓 ⓪ }
fermion
-1/3
R
LR
down-quark
{𝜓 ⑥ , 𝜓 ⑦ }
Anti-fermion
+1/3
R
RL
Anti-down-quark
{𝜓 ② , 𝜓 ⓪ }
fermion
-1/3
G
LR
down-quark
{𝜓 ⑤ , 𝜓 ⑦ }
Anti-fermion
+1/3
G
RL
Anti-down-quark
{𝜓 ③ , 𝜓 ⓪ }
fermion
-1/3
B
LR
down-quark
{𝜓 ④ , 𝜓 ⑦ }
Anti-fermion
+1/3
B
RL
Anti-down-quark
{𝜓 ④ , 𝜓 ⓪ }
fermion
+2/3
B
RR
up-quark
{𝜓 ③ , 𝜓 ⑦ }
Anti-fermion
-2/3
B
LL
Anti-up-quark
{𝜓 ⑤ , 𝜓 ⓪ }
fermion
+2/3
G
RR
up-quark
{𝜓 ② , 𝜓 ⑦ }
Anti-fermion
-2/3
G
LL
Anti-up-quark
{𝜓 ⑥ , 𝜓 ⓪ }
fermion
+2/3
R
RR
up-quark
{𝜓 ① , 𝜓 ⑦ }
Anti-fermion
-2/3
R
LL
Anti-up-quark
69
Reverse quarks
Pair
s-type
e-charge
c-charge
Handedness
SM Name
{𝜓 ⓪ , 𝜓 ① }
fermion
+1/3
R
RL
down-r-quark
{𝜓 ⑦ , 𝜓 ⑥ }
Anti-fermion
-1/3
R
LR
Anti-down-r-quark
{𝜓 ⓪ , 𝜓 ② }
fermion
+1/3
G
RL
down-r-quark
{𝜓 ⑦ , 𝜓 ⑤ }
Anti-fermion
-1/3
G
LR
Anti-down-r-quark
{𝜓 ⓪ , 𝜓 ③ }
fermion
+1/3
B
RL
down-r-quark
{𝜓 ⑦ , 𝜓 ④ }
Anti-fermion
-1/3
B
LR
Anti-down-r_quark
{𝜓 ⓪ , 𝜓 ④ }
fermion
-2/3
B
RR
up-r-quark
{𝜓 ⑦ , 𝜓 ③ }
Anti-fermion
+2/3
B
LL
Anti-up-r-quark
{𝜓 ⓪ , 𝜓 ⑤ }
fermion
-2/3
G
RR
up-r-quark
{𝜓 ⑦ , 𝜓 ② }
Anti-fermion
+2/3
G
LL
Anti-up-r-quark
{𝜓 ⓪ , 𝜓 ⑥ }
fermion
-2/3
R
RR
up-r-quark
{𝜓 ⑦ , 𝜓 ① }
Anti-fermion
+2/3
R
LL
Anti-up-r-quark
70
Massive Bosons
 Fermions couple their quantum state
function to the standard discrete symmetry
version of the background field.
 Bosons couple their quantum state function
to one of the non-standard discrete
symmetry versions of the background field.
71
Higgs mechanism?
 All eight discrete symmetry versions of the
background field share the same real part.
 With other words the curvature of the eight
symmetry versions is exactly identical!
 Thus fermions and massive bosons live in the same
gravitation potential.
 This coupling of versions implements the same
task as the Higgs mechanism is supposed to
implement
72
W-particles
{𝜓 ⑥ , 𝜓 ① }
boson
-1
RR
RL
𝑊−
{𝜓 ① , 𝜓 ⑥ }
Anti-boson
+1
RR
LR
𝑊+
{𝜓 ⑥ , 𝜓 ② }
boson
-1
RG
RL
𝑊−
{𝜓 ② , 𝜓 ⑥ }
Anti-boson
+1
GR
LR
𝑊+
{𝜓 ⑥ , 𝜓 ③ }
boson
-1
RB
RL
𝑊−
{𝜓 ③ , 𝜓 ⑥ }
Anti-boson
+1
BR
LR
𝑊+
{𝜓 ⑤ , 𝜓 ① }
boson
-1
GG
RL
𝑊−
{𝜓 ① , 𝜓 ⑤ }
Anti-boson
+1
GG
LR
𝑊+
{𝜓 ⑤ , 𝜓 ② }
boson
-1
GG
RL
𝑊−
{𝜓 ② , 𝜓 ⑤ }
Anti-boson
+1
GG
LR
𝑊+
{𝜓⑤ , 𝜓③ }
boson
-1
GB
RL
𝑊−
{𝜓 ③ , 𝜓 ⑤ }
Anti-boson
+1
BG
LR
𝑊+
{𝜓 ④ , 𝜓 ① }
boson
-1
BR
RL
𝑊−
{𝜓 ① , 𝜓 ④ }
Anti-boson
+1
RB
LR
𝑊+
{𝜓 ④ , 𝜓 ② }
boson
-1
BG
RL
𝑊−
{𝜓 ② , 𝜓 ④ }
Anti-boson
+1
GB
LR
𝑊+
{𝜓 ④ , 𝜓 ③ }
boson
-1
BB
RL
𝑊−
{𝜓 ③ , 𝜓 ④ }
Anti-boson
+1
BB
LR
𝑊+
73
Z-particles
Pair
s-type
e-charge
c-charge
Handedness
SM Name
{𝜓 ② , 𝜓 ① }
boson
0
GR
LL
Z
{𝜓 ⑤ , 𝜓 ⑥ }
Anti-boson
0
GR
RR
Z
{𝜓 ③ , 𝜓 ① }
boson
0
BR
LL
Z
{𝜓 ④ , 𝜓 ⑥ }
Anti-boson
0
RB
RR
Z
{𝜓 ③ , 𝜓 ② }
boson
0
BR
LL
Z
{𝜓 ④ , 𝜓 ⑤ }
Anti-boson
0
RB
RR
Z
{𝜓 ① , 𝜓 ② }
boson
0
RG
LL
Z
{𝜓 ⑥ , 𝜓 ⑤ }
Anti-boson
0
RG
RR
Z
{𝜓 ① , 𝜓 ③ }
boson
0
RB
LL
Z
{𝜓 ⑥ , 𝜓 ④ }
Anti-boson
0
RB
RR
Z
{𝜓 ② , 𝜓 ③ }
boson
0
RB
LL
Z
{𝜓 ⑤ , 𝜓 ④ }
Anti-boson
0
RB
RR
Z
74
Neutrinos
type
s-type
e-charge
c-charge
Handedness
SM Name
{𝜓 ⑦ , 𝜓 ⑦ }
fermion
0
NN
RR
neutrino
{𝜓 ⓪ , 𝜓 ⓪ }
Anti-fermion
0
WW
LL
neutrino
{𝜓 ⑥ , 𝜓 ⑥ }
boson?
0
RR
RR
neutrino
{𝜓 ① , 𝜓 ① }
Anti- boson?
0
RR
LL
neutrino
{𝜓 ⑤ , 𝜓 ⑤ }
boson?
0
GG
RR
neutrino
{𝜓 ② , 𝜓 ② }
Anti- boson?
0
GG
LL
neutrino
{𝜓 ④ , 𝜓 ④ }
boson?
0
BB
RR
neutrino
{𝜓 ③ , 𝜓 ③ }
Anti- boson?
0
BB
LL
neutrino
75
Color confinement
The color confinement rule forbids the
generation of individual particles that
have non-neutral color charge
76
Color confinement
 Color confinement forbids the generation of
individual quarks
 Quarks can appear in hadrons
 Color confinement blocks observation of
gluons
77
Photons & gluons
type
s-type
e-charge
c-charge
Handedness
SM Name
{𝜓 ⑦ }
boson
0
N
R
photon
{𝜓 ⓪ }
boson
0
W
L
photon
{𝜓 ⑥ }
boson
0
R
R
gluon
{𝜓 ① }
boson
0
R
L
gluon
{𝜓 ⑤ }
boson
0
G
R
gluon
{𝜓 ② }
boson
0
G
L
gluon
{𝜓 ④ }
boson
0
B
R
gluon
{𝜓 ③ }
boson
0
B
L
gluon
78
Photons & gluons
 Photons and gluons are NOT particles
 Ultra-high frequency waves are constituted
by wave fronts that at every progression step
are emitted by elementary particles
 Photons and gluons are modulations of
ultra-high frequency carrier waves.
79
Fundamental particles
 Due to color confinement some elementary
particles cannot be created as individuals
 Quarks can only be created combined in
hadrons
 Fundamental particles form a category of
particles that are created in one integral action
 The color charge of fundamental particles is
neutral
80
81
Dual space distributions
 A subset of the (quaternionic) distributions have the
same shape in configuration space and in the linear
canonical conjugated space.
We call them dual space distributions
These are functions that are invariant under Fourier
transformation.
The Qpatterns and the harmonic and spherical
oscillations belong to this class.
Fourier-invariant functions show iso-resolution, that
is, ∆p = ∆q in the Heisenberg’s uncertainty relation.
82
Why has nature a preference?
 Nature seems to have a preference for this class of
quaternionic distributions.
 A possible explanation is the two-step generation
process, where the first step is realized in
configuration space and the second step is realized in
canonical conjugated space.
 The whole pattern is generated two-step by two-step.
 The only way to keep coherence between a distribution
and its Fourier transform that are both generated step
by step is to generate them in pairs.
83
Conclusion
 Fundament
 Quantum logic
 Book model
 Correlation vehicle
 Main features
 Fundamentally countable ⇛ Quanta
 Embedded in continuum ⇛ Fields
 Fundamentally stochastic ⇛ Quantum Physics
 Palestra is curved
⇛ Quaternionic “GR”
 Quaternionic metric
}
84
Conclusion
 Contemporary physics works (QED, QCD)
 But cannot explain fundamental features
 Origin of dynamics
 Space curvature
 Inertia
 Existence of Quantum Physics
 What photons are
85
End
 Physics made its greatest misstep in the
thirties when it turned away from the
fundamental work of Garret Birkhoff and
John von Neumann.
 This deviation did not prohibit pragmatic
use of the new methodology.
 However, it did prevent deep understanding
of that technology because the
methodology is ill founded.
86
					 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            