* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 4 - Indiana University Bloomington
Wave function wikipedia , lookup
Quantum key distribution wikipedia , lookup
Canonical quantization wikipedia , lookup
Scalar field theory wikipedia , lookup
Density functional theory wikipedia , lookup
X-ray photoelectron spectroscopy wikipedia , lookup
Wave–particle duality wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Coupled cluster wikipedia , lookup
Hartree–Fock method wikipedia , lookup
Chemical bond wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Hydrogen atom wikipedia , lookup
Atomic theory wikipedia , lookup
Molecular orbital wikipedia , lookup
Atomic orbital wikipedia , lookup
Molecular Modeling: Beyond Empirical Equations Quantum Mechanics Realm C372 Introduction to Cheminformatics II Kelsey Forsythe Atomistic Model History  Atomic Spectra   Plum-Pudding Model   Neils Bohr (circa 1913) Wave-Particle Duality    Planck (circa 1905) Planetary Model   J. J. Thomson (circa 1900) UV Catastrophe-Quantization   Balmer (1885) DeBroglie (circa 1924) Uncertainty Principle (Heisenberg) Schrodinger Wave Equation  Erwin Schrodinger and Werner Heisenberg(1926) Classical vs. Quantum Trajectory Real numbers   Deterministic (“The value is ___”)   Variables Continuous energy spectrum      Wavefunction Complex (Real and Imaginary components) Probabilistic (“The average value is __ ” Operators  Discrete/Quantized energy  Tunneling  Zero-point energy Schrodinger’s Equation Hˆ   E  Hˆ - Hamiltonian operator Hˆ  Tˆ  Vˆ  N   Gravity?   i 2 2mi N  2 C i j  e ie j ri  r j Hydrogen Molecule Hamiltonian Hˆ  Tˆ  Vˆ 2  Hˆ   2    2p1  2p 2  e21  e22       m m m m  p p e e    1 1 1 1 1 1  C        re1e 2 rp1 p 2 rp1e1 rp1e 2 rp 2e1 rp 2e 2  Born-Oppenheimer Approximation (Fix nuclei) Hˆ el  Tˆel  Vˆel  nuclei  Vnuclei 2 2 2  1      1 1 1 1  1 e 1 e 2 ˆ H el      C      C    2  me me  rp1 p 2  re1e 2 rp1e1 rp1e 2 rp 2e1 rp 2e 2   Now Solve Electronic Problem Electronic Schrodinger Equation  Solutions: F (r )   c m  m (r ) m m (r ), the basis set, are of a known form  Need to determine coefficients (cm)      Wavefunctions gives probability of finding electrons in space (e. g. s,p,d and f orbitals) Molecular orbitals are formed by linear combinations of atomic orbitals (LCAO) Hydrogen Molecule VBT  HOMO HOMO  1 ( A   B ) 2  LUMO LUMO  1 ( A   B ) 2  Hydrogen Molecule  Bond Density Ab Initio/DFT    Complete Description! Generic! Major Drawbacks:    Mathematics can be cumbersome Exact solution only for hydrogen Informatics  Approximate solution time and storage intensive – Acquisition, manipulation and dissemination problems Approximate Methods  SCF (Self Consistent Field) Method (a.ka. Mean Field or Hartree Fock)      Pick single electron and average influence of remaining electrons as a single force field (V0 external) Then solve Schrodinger equation for single electron in presence of field (e.g. H-atom problem with extra force field) Perform for all electrons in system Combine to give system wavefunction and energy (E) Repeat to error tolerance (Ei+1-Ei) Recall Schrodinger Equation  Quantum vs. Classical  Born Oppenheimer  Hartree-Fock (aka SCF/central field) method  Basis Sets  Each atomic orbital/basis function is itself comprised of a set of standard functions Atomic Orbital F LCAO (r )   c m  m (r ) m N m   Cmje  mj r 2 j Expansion Coefficient Contraction coefficient (Static for calculation) STO(Slater Type Orbital): ~Hydrogen Atom Solutions  GTO(Gaussian Type Orbital): m  More Amenable to computation mj r 2 STO vs. GTO  GTO   Improper behavior for small r (slope equals zero at nucleus) Decays too quickly Basis Sets Basis Sets Molecular Orbital F    (r )   cm   m (r ) What “we” do!! m Atomic Orbital N  m   Cmj  j STO GTO/CGTO j Optimized using atomic ab initio calculations PGTO  j e  j r 2 Gaussian Type Orbitals  Primitives  ,n,l,m (r,, )  NYl,m (, )r (2n2l ) r 2 e Shapes typical of H-atom orbitals (s,p,d etc)  Contracted    Vary only coefficients of valence (chemically interesting parts) in calculation Minimum Basis Set (STO-3G)  The number of basis functions is equal to the minimum required to accommodate the # of electrons in the system H(# of basis functions=1)-1s  Li-Ne(# of basis functions=5) 1s,2s,2px, 2y, 2pz  Basis Sets Types:  STO-nG(n=integer)-Minimal Basis Set     Approximates shape of STO using single contraction of n- PGTOs (typically, n=3) Intuitive The universe is NOT spherical!! 3-21G (Split Valence Basis Sets)   Core AOs 3-PGTOs Valence AOs with 2 contractions, one with 2 primitives and other with 1 primitive Basis Sets Types: 3-21G(*)-Use of d orbital functions (2nd row atoms only)-ad hoc  6-31G*-Use of d orbital functions for non-H atoms  6-31G**-Use of d orbital functions for H as well  Examples  C  STO-3G-Minimal Basis Set 3 primitive gaussians used to model each STO  # basis functions = 5 (1s,2s,3-2p’s)   3-21G basis-Valence Double Zeta 1s (core) electrons modeled with 3 primitive gaussians  2s/2p electrons modeled with 2 contraction sets (2primitives and 1 primitive)  # basis functions = 8 (1s,2s,6-2p’s)  Polarization  Addition of higher angular momentum functions  HCN  Addition of p-function to H (1s) basis better represents electron density (ie sp character) of HC bond Diffuse functions  Addition of basis functions with small exponents (I.e. spatial spread is greater)      Anions Radicals Excited States Van der Waals complexes (Gilbert) Ex. Benzene-Dimers (Gilbert)   w/o Diffuse functions T-shaped optimum w/Diffuse functions parallel-displaced optimum Computational Limits  Hartree-Fock limit NOT exact solution  Does not include correlation  Does not include exchange  Exact Energy* Correlation/Exchange Basis set size BO not withstanding Correcting Approximations  Accounting for Electron Correlations DFT(Density Functional Theory)  Moller-Plesset (Perturbation Theory)  Configuration Interaction (Coupling single electron problems)  Computational Reminders    HF typically scales N4 As increase basis set size accuracy/calculation time increases ALL of these ideas apply to any program utilizing ab initio techniques NOT just Spartan (Gilbert) Quick Guide  Basis  Meaning  STO-3G(minimal basis)   3-21G-6-311G(split-valence basis)    */** 3 PGTO used for each STO/atomic orbital Additional basis functions for valence electrons Addition of d-type orbitals to calculation (polarization)   +/++  ** (for H as well) Diffuse functions (s and p type) added  ++ (for H as well) Modeling Nuclear Motion IR - Vibrations  NMR – Magnetic Spin  Microwave – Rotations  Modeling Nuclear Motion (Vibrations) Harmonic Oscillator Hamiltonian 2   1 ˆ H (r )     (r ) 2 2 r 2 8.35E-28 8.35E-28 8.35E-28 8.35E-28 1.4E-18 8.35E-28 8.35E-28 8.35E-28 1.2E-18 8.35E-28 8.35E-28 1E-18 8.35E-28 8.35E-28 8E-19 8.35E-28 8.35E-28 8.35E-28 6E-19 8.35E-28 8.35E-28 4E-19 8.35E-28 8.35E-28 2E-19 8.35E-28 8.35E-28 8.35E-28 0 8.35E-28 0 8.35E-28 8.77567E+14 20568787140 2.03098E-18 1.05374E-18 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 8.77567E+14 0.5 1 8.77567E+14 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 20568787140 1.5 20568787140 1.54682E-18 1.34201E-18 1.15913E-18 9.96207E-19 8.51451E-19 7.23209E-19 6.09973E-19 5.10362E-19 4.2311E-19 3.47061E-19 2.81155E-19 2.24426E-19 1.75987E-19 1.35031E-19 1.0082E-19 7.26787E-20 4.99924E-20 3.22001E-20 1.87901E-20 2 9.29638E-21 2.5 3.29443E-21 8.82365E-19 8.02375E-19 7.26185E-19 6.53795E-19 5.85205E-19 5.20415E-19 4.59425E-19 4.02235E-19 3.48845E-19 2.99255E-19 2.53465E-19 2.11475E-19 1.73285E-19 1.38895E-19 1.08305E-19 8.15147E-20 5.85247E-20 3.93347E-20 2.39447E-20 31.23547E-20 3.5 4.56475E-21 Empirical for Hydrogen Molecule9.66155E-19 8.77567E+14Potential 20568787140 1.77569E-18 4
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            