
MATH 409, Fall 2013 [3mm] Advanced Calculus I
... interval [a, b] is also uniformly continuous on [a, b]. Proof: Assume that a function f : [a, b] → R is not uniformly continuous on [a, b]. We have to show that f is not continuous on [a, b]. By assumption, there exists ε > 0 such that for any δ > 0 we can find two points x, y ∈ [a, b] satisfying |x ...
... interval [a, b] is also uniformly continuous on [a, b]. Proof: Assume that a function f : [a, b] → R is not uniformly continuous on [a, b]. We have to show that f is not continuous on [a, b]. By assumption, there exists ε > 0 such that for any δ > 0 we can find two points x, y ∈ [a, b] satisfying |x ...
Section 3.2 Rolle`s Theorem and the Mean Value Theorem Rolle`s
... Although the Mean Value Theorem can be used directly in problem solving, it is used more often to prove other theorems. In fact, some people consider this to be the most important theorem in calculus—it is closely related to the Fundamental Theorem of Calculus discussed in Chapter 4. For now, you ca ...
... Although the Mean Value Theorem can be used directly in problem solving, it is used more often to prove other theorems. In fact, some people consider this to be the most important theorem in calculus—it is closely related to the Fundamental Theorem of Calculus discussed in Chapter 4. For now, you ca ...
Pythagorean Theorem
... Which number goes where? You need to identify the hypotenuse. It’s the one opposite of the right angle. The hypotenuse is always going to be the c in the formula. Since we do not know the value of c, it stays as c in the formula. Does it matter whether we use a = 8 or 15? No. Let’s use a = 8 and b = ...
... Which number goes where? You need to identify the hypotenuse. It’s the one opposite of the right angle. The hypotenuse is always going to be the c in the formula. Since we do not know the value of c, it stays as c in the formula. Does it matter whether we use a = 8 or 15? No. Let’s use a = 8 and b = ...
Supplement: The Fundamental Theorem of Algebra - Faculty
... depended on the intersection of two curves which were based on the polynomial. In his second proof, he abandoned the geometric argument, but gave an argument still not rigorous based on the ideas of the time [Werke, 3, 33–56]. The third proof was based on Cauchy’s Theorem and, hence, on the then-dev ...
... depended on the intersection of two curves which were based on the polynomial. In his second proof, he abandoned the geometric argument, but gave an argument still not rigorous based on the ideas of the time [Werke, 3, 33–56]. The third proof was based on Cauchy’s Theorem and, hence, on the then-dev ...
Higher Order Bernoulli and Euler Numbers
... usual Bernoulli numbers, since the egf for them is obviously a composite. Similarly for the higher order Euler numbers. This result is still unpublished (but I spoke at HRUMC a couple of years ago about it.) 2. Generalize my corollary of di Bruno’s formula to the multivariable case. (The next talk i ...
... usual Bernoulli numbers, since the egf for them is obviously a composite. Similarly for the higher order Euler numbers. This result is still unpublished (but I spoke at HRUMC a couple of years ago about it.) 2. Generalize my corollary of di Bruno’s formula to the multivariable case. (The next talk i ...
The fundamental philosophy of calculus is to a) approximate, b
... and F are continuous at 0, and we also know that compositions of such functions are continuous. It follows that P(x, y) is continuous at (0, 0). Since P(0, 0) = 0, the ...
... and F are continuous at 0, and we also know that compositions of such functions are continuous. It follows that P(x, y) is continuous at (0, 0). Since P(0, 0) = 0, the ...
Fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept of the derivative of a function with the concept of the function's integral.The first part of the theorem, sometimes called the first fundamental theorem of calculus, is that the definite integration of a function is related to its antiderivative, and can be reversed by differentiation. This part of the theorem is also important because it guarantees the existence of antiderivatives for continuous functions.The second part of the theorem, sometimes called the second fundamental theorem of calculus, is that the definite integral of a function can be computed by using any one of its infinitely-many antiderivatives. This part of the theorem has key practical applications because it markedly simplifies the computation of definite integrals.