• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Pocket physics - National Physical Laboratory
Pocket physics - National Physical Laboratory

key - circuits 8
key - circuits 8

Physics 133: Tutorial week 2 Electrostatics
Physics 133: Tutorial week 2 Electrostatics

Solid State 2 – Homework 9  Use the Maxwell equation
Solid State 2 – Homework 9 Use the Maxwell equation

Quantum Mechanics in 3
Quantum Mechanics in 3

... particle inside the well. We are lucky because the wave function outside the well is ...
PHS102 Lecture 25 Sep 2014 DLI Block 2 2nd Floor
PHS102 Lecture 25 Sep 2014 DLI Block 2 2nd Floor

Powerpoint 2
Powerpoint 2

Quantum Physics 2005 Notes-6 Solving the Time Independent Schrodinger Equation
Quantum Physics 2005 Notes-6 Solving the Time Independent Schrodinger Equation

Pocket physics - Institute of Physics
Pocket physics - Institute of Physics

... Electrons and other particles can be diffracted to show their wave properties. For first minimum sin θ = m b For small angles sin θ ≈ θ (rads) ...
Right-hand rule
Right-hand rule

1 Chirality density wave of the `hidden order` phase in URu2Si2 H.
1 Chirality density wave of the `hidden order` phase in URu2Si2 H.

The Casimir Effect: Some Aspects
The Casimir Effect: Some Aspects

EM 3 Section 6: Electrostatic Energy and Capacitors 6. 1
EM 3 Section 6: Electrostatic Energy and Capacitors 6. 1

Third example: Infinite Potential Well ∞ ∞
Third example: Infinite Potential Well ∞ ∞

More work and energy notes to help
More work and energy notes to help

I-4
I-4

Electroweak Theory - Florida State University
Electroweak Theory - Florida State University

Physics 1520, Spring 2013
Physics 1520, Spring 2013

Work and Energy of electrostatic fields
Work and Energy of electrostatic fields

CT27--5 A spherical shell with a uniform positive charge density on
CT27--5 A spherical shell with a uniform positive charge density on

+Q - Purdue Physics
+Q - Purdue Physics

Online Course Evaluation Chapters 15-20
Online Course Evaluation Chapters 15-20

Lec08 - Purdue Physics
Lec08 - Purdue Physics

Lecture 18: Intro. to Quantum Mechanics
Lecture 18: Intro. to Quantum Mechanics

Boltzmann factors and partition functions revisited
Boltzmann factors and partition functions revisited

... in distinct regions of space and are (in principle) experimentally identifiable (“taggable”) according to their location. (Example: molecules fixed at distinct sites in a crystal lattice.) From (16), the partition function Q for independent and distinguishable particles factors into the product of p ...
< 1 ... 118 119 120 121 122 123 124 125 126 ... 139 >

Casimir effect



In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir.The typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy.In fact, ""Casimir's original goal was to compute the van der Waals force between polarizable molecules"" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields.Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir–Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work [e.g. van Blockland and Overbeek (1978)] had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of about 1 atmosphere of pressure (the precise value depending on surface geometry and other factors).In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas illustrate the Casimir force.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report