• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Millikan`s Oil Drop Experiment
Millikan`s Oil Drop Experiment

Picturing Electric Forces
Picturing Electric Forces

Chapter 2 Particle properties of waves
Chapter 2 Particle properties of waves

Harmonic Oscillator Physics
Harmonic Oscillator Physics

... This is interesting, but we must keep in mind a number of caveats: 1. the classical density is time-dependent, and we have chosen to average over the “natural” timescale in the system, if no such scale presented itself, we would be out of luck making these comparisons, 2. Our classical temporal aver ...
McGill String Cosmology Workshop April 2005
McGill String Cosmology Workshop April 2005

PHYSICS OF THE ZERO-POINT FIELD: IMPLICATIONS FOR
PHYSICS OF THE ZERO-POINT FIELD: IMPLICATIONS FOR

... interactions: energy, charge and electromagnetic fields being primary. (4) The creation of electromagnetic radiation by accelerated charge may possibly be interpretable as scattering of ambient ZPF radiation. In stationary frames the scattering of ZPF radiation by a dipole is an equilibrium process ...
6 I – Rocket Science
6 I – Rocket Science

Elektrostatika: Hukum Coulomb
Elektrostatika: Hukum Coulomb

F.S.S. Rosa
F.S.S. Rosa

Electromagnetic Preons as Particles of Everything
Electromagnetic Preons as Particles of Everything

The Casimir force: background, experiments, and
The Casimir force: background, experiments, and

HW5
HW5

A modern view of forces - HEP Educational Outreach
A modern view of forces - HEP Educational Outreach

FREE WILL - science.uu.nl project csg
FREE WILL - science.uu.nl project csg

Time Dependent Perturbation Theory - 2
Time Dependent Perturbation Theory - 2

Powerpoint
Powerpoint

PHY481 - Lecture 24: Energy in the magnetic field, Maxwell`s term
PHY481 - Lecture 24: Energy in the magnetic field, Maxwell`s term

Is the Zero-Point Energy Real? - General Guide To Personal and
Is the Zero-Point Energy Real? - General Guide To Personal and

Final Exam - UF Physics
Final Exam - UF Physics

Modification of the Strong Nuclear Force by the
Modification of the Strong Nuclear Force by the

whole article in Word 97 fomat
whole article in Word 97 fomat

Milikan`s Oil Drop Experiment
Milikan`s Oil Drop Experiment

EE3321 Electromagnetic Field Theory
EE3321 Electromagnetic Field Theory

II Shift - Kendriya Vidyalaya Sector 8 - RK Puram New Delhi
II Shift - Kendriya Vidyalaya Sector 8 - RK Puram New Delhi

Quantum2
Quantum2

< 1 ... 116 117 118 119 120 121 122 123 124 ... 139 >

Casimir effect



In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir.The typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy.In fact, ""Casimir's original goal was to compute the van der Waals force between polarizable molecules"" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields.Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir–Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work [e.g. van Blockland and Overbeek (1978)] had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of about 1 atmosphere of pressure (the precise value depending on surface geometry and other factors).In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas illustrate the Casimir force.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report