On the energy of electric field in hydrogen atom
... The energy of the particle (3) does not include the potential energy of this particle itself. Let us consider a charged particle, which produces electric field. The energy of this field is not included in the energy of a particle (3). This is so because the energy of the electric field produced by t ...
... The energy of the particle (3) does not include the potential energy of this particle itself. Let us consider a charged particle, which produces electric field. The energy of this field is not included in the energy of a particle (3). This is so because the energy of the electric field produced by t ...
Relativistic effects in the dynamical Casimir effect
... • An open coplanar waveguide terminated by a SQUID, that is a very sensitive magnetometer (J.R. Johansson et al 2009/2010). • The phase field operator Φ(t, x), described by a scalar massless Klein-Gordon equation in 1 + 1 dimensions, keeps the electromagnetic field in the transmission line. ...
... • An open coplanar waveguide terminated by a SQUID, that is a very sensitive magnetometer (J.R. Johansson et al 2009/2010). • The phase field operator Φ(t, x), described by a scalar massless Klein-Gordon equation in 1 + 1 dimensions, keeps the electromagnetic field in the transmission line. ...
Potential Energy and Conservation of Mechanical Energy
... A force is conservative if the work done by it on a particle that moves between two points depends only on these points and not on the path followed. A force is nonconservative if the work done by it on a particle that moves between two points depends on the path taken between these two points. The ...
... A force is conservative if the work done by it on a particle that moves between two points depends only on these points and not on the path followed. A force is nonconservative if the work done by it on a particle that moves between two points depends on the path taken between these two points. The ...
Physics
... motion in which motion everywhere in the universe can be explained by the same few rules. Note that his mathematical analysis of gravitational force and motion showed that planetary orbits had to be the very ellipses that Johannes Kepler had proposed two generations earlier. Describe how Newton’s sy ...
... motion in which motion everywhere in the universe can be explained by the same few rules. Note that his mathematical analysis of gravitational force and motion showed that planetary orbits had to be the very ellipses that Johannes Kepler had proposed two generations earlier. Describe how Newton’s sy ...
Lecture 9
... Example: You pull a 30 N chest 5 meters across the floor at a constant speed by applying a force of 50 N at an angle of 30 degrees. How much work is done by the 50 N force? N ...
... Example: You pull a 30 N chest 5 meters across the floor at a constant speed by applying a force of 50 N at an angle of 30 degrees. How much work is done by the 50 N force? N ...
workbook - RDE NSW
... 17. An oscilloscope is particularly good for studying regularly fluctuating voltages in electrical circuits or electronic equipment. After considering how the oscilloscope works, propose reasons why this tool should be so useful for this purpose. ...
... 17. An oscilloscope is particularly good for studying regularly fluctuating voltages in electrical circuits or electronic equipment. After considering how the oscilloscope works, propose reasons why this tool should be so useful for this purpose. ...
Casimir effect
In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir.The typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy.In fact, ""Casimir's original goal was to compute the van der Waals force between polarizable molecules"" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields.Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir–Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work [e.g. van Blockland and Overbeek (1978)] had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of about 1 atmosphere of pressure (the precise value depending on surface geometry and other factors).In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas illustrate the Casimir force.