• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
A2.1 Notes
A2.1 Notes

...  Zero is neither positive nor negative. ...
Section 1.3 - GEOCITIES.ws
Section 1.3 - GEOCITIES.ws

Set theory
Set theory

... generates the Calkin- Wilf sequence ...
Baltic Way 2016 5 November 2016, Oulu, Finland Working time: 41
Baltic Way 2016 5 November 2016, Oulu, Finland Working time: 41

Full text
Full text

... where £(/c) = 1,6, 42, and 15 when k = 3, 7, 49, and 31, respectively. Note that i denotes the square root of -1 in the last formula. It is perhaps clear that the determination of such asymptotic formulas involves sums of complex expressions dependent on the orbit of 10 modulo k9 ...
01-12 Intro, 2.1 Sets
01-12 Intro, 2.1 Sets

Känguru der Mathematik 2009 - Junior
Känguru der Mathematik 2009 - Junior

Oulun Lyseon lukio / Galois club 2010
Oulun Lyseon lukio / Galois club 2010

ONTOLOGY OF MIRROR SYMMETRY IN LOGIC AND SET THEORY
ONTOLOGY OF MIRROR SYMMETRY IN LOGIC AND SET THEORY

Bound and Free Variables Theorems and Proofs
Bound and Free Variables Theorems and Proofs

Standard Form for small numbers
Standard Form for small numbers

F.Y. B.Sc. - Mathematics
F.Y. B.Sc. - Mathematics

Document
Document

The complexity of the dependence operator
The complexity of the dependence operator

Implementing real numbers with RZ
Implementing real numbers with RZ

ON REPRESENTATIONS OF NUMBERS BY SUMS OF TWO
ON REPRESENTATIONS OF NUMBERS BY SUMS OF TWO

Integral
Integral

Square Numbers
Square Numbers

lecture5
lecture5

Standard Form
Standard Form

Mat 2345 Student Responsibilities — Week 5 Week 5 Overview 2.4
Mat 2345 Student Responsibilities — Week 5 Week 5 Overview 2.4

Altamont Pre-test - Weatherly Math Maniacs
Altamont Pre-test - Weatherly Math Maniacs

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CORE COURSE B.Sc. MATHEMATICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CORE COURSE B.Sc. MATHEMATICS

... 71. The set S is open then which of the following is true (a) S does not contain if boundary points (b) S contains its boundary points (c) S have its boundary points (d) None of these 72. A metrix Space X satisfies Bolzano wierstrass property then (a) Every infinite sequence ( ...
REDUCTIO AD ABSURDUM* (Proof by contradiction) Y.K. Leong
REDUCTIO AD ABSURDUM* (Proof by contradiction) Y.K. Leong

Rational numbers - David Michael Burrow
Rational numbers - David Michael Burrow

... Irrational Numbers  NOT rational  Numbers that CAN’T be written as a fraction of integers  “Weird” numbers  Non-terminating, non-repeating decimals Examples of irrational numbers:  Special numbers like  Roots that are not whole numbers like 7  Decimals that don’t repeat the exact same thing l ...
< 1 ... 120 121 122 123 124 125 126 127 128 ... 158 >

Infinitesimal

In mathematics, infinitesimals are things so small that there is no way to measure them. The insight with exploiting infinitesimals was that entities could still retain certain specific properties, such as angle or slope, even though these entities were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the ""infinite-th"" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic ingredient in the procedures of infinitesimal calculus as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, ""infinitesimal"" means ""extremely small"". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.Vladimir Arnold wrote in 1990:Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.↑ ↑ ↑ ↑
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report