Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Probability and Statistics I 45-733, Spring 2002 Homework #2 Solution Pp 141-4 3(a) Proportion of Packages 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 46 47 48 49 50 51 Number of Clips 3(b) Fx (47) = 0.04 Fx (48) = 0.17 Fx (49) = 0.38 Fx (50) = 0.67 Fx (51) = 0.87 Fx (52) = 0.97 Fx (53) = 1.00 52 53 54 3(c) P(49 X 51) 0.21 0.29 0.20 0.70 3(d) 1 – [P(X < 50)]2 = 1 – 0.1444 = 0.8556 Pp 141-4 5(a) Px (0) = (0.90)(0.90) = 0.81 Px (1) = (0.90)(0.10) + (0.10)(0.90) = 0.18 Px (2) = (0.10)(0.10) = 0.01 5(b) P(Y = 0) = 18/20 17/19 = 153/190 P(Y = 1) = (2/20 18/19) + (18/20 2/19) = 36/190 P(Y = 2) = 2/20 1/19 = 1/190 The answer is part (b) is different from that of part (a) because in part (b) the probability of picking a defective part on the second draw depends upon the result of the first draw. Pp 141-4 11(a) 0 1(0.12) 2(0.23) 3(0.31) 4(0.19) 5(0.18) 6(0.03) 7(0.02) 2.99 x P ( x) 10.93 2 x 10.93 (2.99) 2 1.9899 1.4106 11(b) Revenue: r = 0.50X E(r) = 0.50(2.99) = 1.495 r | 0.50 | (1.4106) 0.7053 Pp 141-4 13 “One and One” E(x) = 1(0.75)(0.25) + 2(0.75)2 = 1.3125 “Two-shot foul” E(x) = 1((0.75)(0.25) + (0.25)(0.75)) + 2(0.75)2 = 1.50 The “Two-shot foul” has a higher expected value. Pp 154-6 19(a) Px(0) = 0.07 + 0.07 + 0.06 + 0.02 = 0.22 Px(1) = 0.09 + 0.06 + 0.07 + 0.04 = 0.26 Px(2) = 0.06 + 0.07 + 0.14 + 0.16 = 0.43 Px(3) = 0.01 + 0.01 + 0.03 + 0.04 = 0.09 X 0 0.21 2(0.30) 3(0.26) 1.39 19(b) Py(0) = 0.07 + 0.09 + 0.06 + 0.01 = 0.23 Py(1) = 0.07 + 0.06 + 0.07 + 0.01 = 0.21 Py(2) = 0.06 + 0.07 + 0.14 + 0.03 = 0.30 Py(3) = 0.02 + 0.04 + 0.16 + 0.40 = 0.26 y 0 0.21 2(0.30) 3(0.26) 1.59 19(c) PY|X (0|3) = 0.01/0.09 = 1/9 PY|X (1|3) = 0.01/0.09 = 1/9 PY|X (2|3) = 0.03/0.09 = 3/9 PY|X (3|3) = 0.04/0.09 = 4/9 19(d) Cov(X,Y) = E(XY) - X Y E(XY) = 0 + (1)(1)(0.06) + (1)(2)(0.07) + (1)(3)(0.04) + (1)(3)(0.04) + (2)(1)(0.07) + (2)(2)(0.14) + (2)(3)(0.16) + (3)(1)(0.01) + (3)(2)(0.03) + (3)(3)(0.04) = 2.55 Cov(X,Y) = 2.55 – (1.39)(1.59) = 0.3399 19(e) No, because Cov(X,Y) 0 Pp 154-6 23(a) Y\X 0 1 Total 0 0.704 0.096 0.8 1 0.168 0.032 0.2 23(b) PY|X (0|0) = 0.704 / 0.8 = 0.88 PY|X (1|0) = 0.096 / 0.8 = 0.12 23(c) Px(0) = 0.8 Px(1) = 0.2 Py(0) = 0.872 Py(1) = 0.128 Total 0.872 0.128 1 23(d) E(XY) = 0.032; X 0.20; Y 0.128 Cov(X,Y) = 0.032 – (0.20)(0.128) = 0.0064 There is a positive relationship between X & Y, as expected by the book-seller. Professors are more likely to be away from the office on Friday than the during the other days. Pp 171-7 29(a) Px(0) (5 C 0)(0.25)0 (0.75)5 0.2373 P( X 1) 1 Px(0) 1 0.2373 0.7627 29(b) P( X 3) Px (3) Px (4) Px(5) (5 C 3)(0.25)3 (0.75) 2 (5 C 4)(0.25) 4 (0.75)1 (5 C 5)(0.25) 5 (0.75)0 10(0.25)3 (0.75) 2 5(0.25) 4 (0.75) (0.25)5 0.08791 0.01465 0.00098 0.1035 Pp 171-7 33(a) Px(5) (5 C 5)(0.4)5 (0.6)0 (0.4)5 0.01024 33(b) P( X 3) Px (3) Px (4) Px (5) (5 C 3)(0.4)3 (0.6)2 (5 C 4)(0.4)4 (0.6)1 (5 C 5)(0.4)5 (0.6)0 0.2304 0.0768 0.0102 0.3174 33(c) Now n = 4 and p = 0.4 P( X 2) Px (2) Px(3) Px(4) 6(0.4) 2 (0.6) 2 4(0.4)3 (0.6)1 (0.4) 4 0.3456 0.1536 0.0256 0.5248 33(d) E(X) = np = 2 33(e) E(X) = 1 + (4)(0.4) = 2.6 Pp 171-7 49. P( X 3) 1 P( X 2) 1 e 4.2 e 4.2 (4.2) e 4.2 (4.2) 2 2! 0.7898 59(a) P(X<3) = 0.05 + 0.2 = 0.25 59(b) E(X) = 0.05 + 2(0.02) + 3(0.35) + 4(0.3) + 5(0.1) = 3.2 59(c) x2 Px( x) 11.3 x 11.3 (3.2)2 1.02956 59(d) Let Z = 20000 + 2000X E(Z) = $26,400 z = |2000|(1.02956) = $2,059.12 59(e) P(X 4) = 0.40 Let Y = Projects which take at least 4 days P(Y 2) = 3(0.4)2(0.6) + (0.4)3 = 0.352