* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download MLL for CLASS-XII MATHEMATICS -2015-16
Relativistic quantum mechanics wikipedia , lookup
Routhian mechanics wikipedia , lookup
Computational fluid dynamics wikipedia , lookup
Generalized linear model wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Least squares wikipedia , lookup
Multiple-criteria decision analysis wikipedia , lookup
Simplex algorithm wikipedia , lookup
Linear algebra wikipedia , lookup
Inverse problem wikipedia , lookup
1
KENDRIYA VIDYALAYA SANGATHAN
RAIPUR REGION
MODULES
for
CLASS-XII
MATHEMATICS
Session -2015-16
2
XII Class Chapter wise weightage
S.No
Chapter
1
Relations and Functions
(i)
Equivalence Relation
(ii)
Invertible functions
(iii)
Binary Operations
Weightage
6M
2
Inverse Trigonometric functions
4M
3
Matrices
4M
4
(i)
Practical Problems
(ii)
Equality of Matrices
Determinants
6M
(Matrix equation & Practical Problems)
5
Continuity
8M
Logarithmic Differentiation
Parametric form with second order derivative
6
Applications of Derivatives
(i)
Increasing & Decreasing functions
(ii)
Tangents and Normal
4M
7
Integration
4M
8
Application of Integrals
6M
9
Differential Equations
4M
(i)
Variable separable differential equation
(ii)
Homogeneous Differential equation
(iii)
Linear Differential equation
10
Vectors
4M
11
Three Dimensional Geometry
6M
(i)
Shortest distance
(ii)
Plane passing through intersection of two planes
12
Linear Programming problems
6M
13
Probability
6M
(i)
Bayes Theorem
(ii)
Probability distribution
(iii)
Multiplication rule
3
MODULES FOR CLASS XII (M.L.L.)
Relations and Functions
Concept: - Types of relations
A relation R in a set A is called
(i) Reflexive, if ๏จa, a ๏ฉ ๏ R for every a ๏ A
(ii) Symmetric, if ๏จa1 , a2 ๏ฉ ๏ R ๏ ๏จa2 , a1 ๏ฉ ๏ R, for all a1 , a2 ๏ A
(iii) Transitive, if ๏จa1 , a2 ๏ฉ ๏ R and ๏จa2 , a3 ๏ฉ ๏ R implies that ๏จa2 , a3 ๏ฉ ๏ R for all a1 , a 2 , a3 ๏ A
A relation R in a set A is said to be an equivalence relation if R is reflexive,
Symmetric and Transitive.
PRACTICE PROBLEMS
LEVEL โI
๏ท Let T be the set of all triangles in plane with R a relation in T given by R={(T1,T2):T1
is congruent to T2}. Shoe that R is an equivalence relation.
๏ท Let L be the set of all lines in a plane and R be the relation in L defined as
R={(L1,L2):L1 is a perpendicular to L2}. Show that R is symmetric but neither
๏ท
Show that the relation R in the set R of real numbers, defined as R ๏ฝ {( a, b) : a ๏ฃ b 2 } is
neither reflexive nor symmetric nor transitive.
LEVEL-II
๏ท Show that the relation R in the set Z of integers given by R={(a, b):2 divides a-b} is
an equivalence relation
๏ท Show that the relation R in the set A ๏ฝ {1,2,3,4,5} given by R = {(a,b): a ๏ญ b is even },
๏ท
is an equivalence relation. Show that all the element of {1,3,5} are related to each
other and all the element of {2,4} are related to each other. But no element of {1,3,5}
is related to any element of {2,4}.
Show that each of the relation R in the set A ๏ฝ {x ๏ Z : 0 ๏ฃ x ๏ฃ 12} , given by
(i) R ๏ฝ {( a, b) : a ๏ญ b is a multiple of 4}
๏ท
๏ท
(ii) R ๏ฝ {( a, b : a ๏ฝ b} is an equivalence relation. Find the set of all element related to 1
in each case
LEVEL-III
Show that the relation R in the set A of points in a plane given by R = {(P,Q):
distance of the point P from the origin is same as the distance of the point Q from the
origin}, is an equivalence relation. Further, show that the set of all points Pโ (0,0) is
the circle passing through P with origin as centre.
Show that the relation R defined in the set A of all triangles as R = {(T1,T2):T1 is
similar to T2}, is equivalence relation. Consider three right angle triangle T1 with
sides 3,4,5,T2 with sides 5,12,13 and T3 with sides 6,8,10. Which triangle among
T1,T2 and T3 are related?
4
๏ท
๏ท
Show that the relation R defined in the set A of all polygon as R = {(P1,P2):P1 and P2
have same number of sides}, is an equivalence relation. What is the set of all element
in A related to the right angle triangle T with sides 3,4,and 5?
Let A={1,2,3,4โฆ..,9} and R is the relation on AXA defined by (a,b)R(c,d) if
a+d=b+c for (a,b),(c,d) in AXA. Prove that R is an equivalence relation and also
obtain the equivalent class ๏๏จ2,5๏ฉ๏ .
Concept: One-one (injective),Onto (surjective) and bijective
Injective: - A function f : X ๏ฎ Y is define to be injective, if the image of distinct
element of X under f are distinct. For every x1 , x2 ๏ X , f ๏จx1 ๏ฉ ๏ฝ f ๏จx2 ๏ฉ ๏ x1 ๏ฝ x2
Surjective:- A function f : X ๏ฎ Y is said to onto (surjective) if every element of Y is
the image of some element of X under f ,i.e for every y ๏ Y there exists an element x in X
such that f ( x ) ๏ฝ y
Bijective: A function f : X ๏ฎ Y is said to be bijective if f is one โone and onto
PRACTICE PROBLEMS
๏ท
LEVEL โ I
Prove that the function f : R ๏ฎ R ,given by f ๏จx ๏ฉ ๏ฝ 2 x is one - one and onto
๏ท
Show that the function f : N ๏ฎ N given by f ๏จ1๏ฉ ๏ฝ f ๏จ2๏ฉ ๏ฝ 1and f ๏จx ๏ฉ ๏ฝ x ๏ญ 1 for every
x>2 is onto but not one-one
Find the number of all one โone function from set A = {1,2,3} to itself.
๏ท
LEVEL โ II
Let A ๏ฝ R ๏ญ {3} and B ๏ฝ R ๏ญ {1} .consider the function f : A ๏ฎ B defined
๏ท
๏ฆ x ๏ญ2๏ถ
by f ( x) ๏ฝ ๏ง
๏ท . Is f one-one and onto? Justify your answer.
๏จ x ๏ญ3๏ธ
Let A = {-1,0,1,2}, B = {-4,-2,0,2} and f , g : A ๏ฎ B be a function defined by
๏ท
f ( x) ๏ฝ x 2 ๏ญ x, x ๏ A and g ( x) ๏ฝ 2 x ๏ญ
1
๏ญ 1, x ๏ A . Are f and g equal? Justify your
2
answer
LEVEL-III
๏ท
Show that the function f : R ๏ฎ R given by f ๏จx ๏ฉ ๏ฝ x 3 is injective
๏ฌ x ๏ซ 1 , x ๏ odd
Show that f : N ๏ฎ N given by f ๏จx ๏ฉ ๏ฝ ๏ญ
is both one - one and onto.
๏ฎ x ๏ญ 1 , x ๏ even
Concept :- Composition of function and Inverse of Function
Let f : A ๏ฎ B and g : B ๏ฎ C be two function .then the composition of f and g , denoted by
๏ท
gof, is defined as the function gof: A ๏ฎ C given by gof ๏จ x ๏ฉ =g ๏จ f ๏จx ๏ฉ๏ฉ, ๏ขx ๏ A
A function f : X ๏ฎ Y is defined to be invertible. If there exists a function g : Y ๏ฎ X Such
that gof ๏ฝ I X and fog ๏ฝ I Y .The function g is called the inverse of f . If f is invertible, then f
must be one one and onto.
5
PRACTICE PROBLEMS
LEVEL โ I
1
3 3
๏ท
If f : R ๏ฎ R be given by f ( x) ๏ฝ (3 ๏ญ x ) , then fof (x) is
๏ท
Consider f : N ๏ฎ N , g : N ๏ฎ N and h : N ๏ฎ R defined as f ( x) ๏ฝ 2 x, g ( x) ๏ฝ 3 y ๏ซ 4
and h(z ) ๏ฝ sin z, ๏ขx, y and z in N. Show that ho( gof ) ๏ฝ (hog )of .
๏ท
๏ฌ 4๏ผ
4x
Let f : R ๏ญ ๏ญ๏ญ ๏ฝ ๏ฎ R be a function defined as f ( x) ๏ฝ
. The show that
3x ๏ซ 4
๏ฎ 3๏พ
๏ฌ 4๏ผ
4x
inverse of f is the map g : Range f ๏ฎ R ๏ญ ๏ญ๏ญ ๏ฝ is g ( x) ๏ฝ
.
4 ๏ญ 3x
๏ฎ 3๏พ
LEVEL โ II
๏ท
Consider f : R๏ซ ๏ฎ ๏4, ๏ฅ๏ฉ given by f ( x) ๏ฝ x 2 ๏ซ 3 . Show that f is invertible with the
inverse f ๏ญ1 of given by f ๏ญ1 ( y) ๏ฝ
๏ท
y ๏ญ 4 , where R๏ซ is the set of all non-negative real
number.
Let f : R ๏ฎ R be defined as f ( x) ๏ฝ 10 x ๏ซ 7 .Find the function g : R ๏ฎ R such that
gof ๏ฝ fog ๏ฝ 1R .
๏ท
Show that the function f : R ๏ฎ R defined by f ๏จ x ๏ฉ ๏ฝ
x
, ๏ขx ๏ R is neither one-one
x ๏ซ1
2
nor onto.
LEVEL โ III
๏ท
Consider f : R๏ซ ๏ฎ ๏๏ญ 5, ๏ฅ๏ฉ given by f ( x) ๏ฝ 9 x 2 ๏ซ 6 x ๏ญ 5 . Show that if f is
๏ฆ
๏ญ1
invertible with f ( x) ๏ฝ ๏ง๏ง
๏จ
๏ท
๏จ
๏ฉ
y ๏ซ 6 ๏ญ1๏ถ
๏ท.
๏ท
3
๏ธ
Let f : N ๏ฎ R be a function defined as f ( x) ๏ฝ 4 x 2 ๏ซ 12 x ๏ซ 15 . Show that
f : N ๏ฎ S , where, S is the range of f , is invertible. Find the inverse of f .
Concept :- Binary Operations
๏ท
A binary operation * on the set X is called commutative, if a * b ๏ฝ b * a , for every
a, b ๏ X .
๏ท
A binary operation *: A ๏ด A ๏ฎ A is said to be associative if
๏จa * b๏ฉ * c ๏ฝ a * ๏จb * c๏ฉ, ๏ขa, b, c,๏ A .
๏ท
Given a Binary operation *: A ๏ด A ๏ฎ A , an element e ๏ A , if it exist, is called identity
for the operation *, if a * e ๏ฝ a ๏ฝ e * a, ๏ขa ๏ A .
Given a binary operation *: A ๏ด A ๏ฎ A with the identity element e in A, an element a ๏ A is
said to be invertible with respect to the operation *,If there exist an element b in A such that
a * b ๏ฝ e ๏ฝ b * a and b is called the inverse of a and is donated by a-1.
6
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
PRACTICE PROBLEMS
LEVEL-I
Consider the binary operation ๏ on the set{1,2,3,4,5} defined by a ๏ b ๏ฝ min{ a, b} .
Write the operation table of the operation ๏ .
Let * be the binary operation on N given by a*b=L.C.M of a and b. Find
(i)5*7,20*16
Let * be a binary operation on the set Q of rational numbers as follows:(i)a*b=a-b
(ii)a*b=a2+b2
(iii)a * b=a + ab
ab
(iv)a * b = (a-b)2
(v)a * b =
(vi)a * b = ab2
4
Find which of binary operation are commutative and which are associative?
LEVEL โ II
Determine which of the following binary operation on the set R are associative and
which are commutative.
( a ๏ซ b)
(a) a * b ๏ฝ 1๏ขa, b ๏ R
(b) a * b ๏ฝ
๏ขa, b ๏ R
2
Let A ๏ฝ N ๏ด N and * be the binary operation on A defined by
๏จa, b๏ฉ ๏ช ๏จc, d ๏ฉ ๏ฝ ๏จa ๏ซ b, b ๏ซ d ๏ฉ .Show that * is commutative and associative. Find the
identity element for *on A ,if any
Consider a binary operation *on N defined as a * b ๏ฝ a 3 ๏ซ b 3 .Choose the correct
answer.
(A)Is * both associative and commutative?
(B)Is * commutative but not associative?
(C)Is * associative but not commutative?
(D)Is * neither commutative nor associative
LEVEL โ III
Consider the binary operation * : R ๏ด R ๏ฎ R and R ๏ด R ๏ฎ R defined as a * b ๏ฝ a ๏ญ b
and a o b ๏ฝ a, ๏ขa, b ๏ R .Show that * is commutative but not associative, o is
๏ท
associative but not commutative. Further, show that ๏ขa, b, c ๏ R, a * (boc) ๏ฝ (a * b). [If
it is so, we say that the operation * distributives over the operation o].Do o
distributive over *? Justify your answer.
Given a non-empty set X, let *: P ( X ) ๏ด P( X ) ๏ฎ P( X ) be defined as
A * B ๏ฝ ( A ๏ญ B) ๏ ( B ๏ญ A), ๏ขA, B ๏ P( X ) .Show that the empty set ๏ฆ is the identify for
๏ท
the operation * and all the element A of P(X) are invertible with A ๏ญ1 ๏ฝ A .
Define a binary operation * on the set {0,1,2,3,4,5,6} as
if a ๏ซ b ๏ผ 7
๏ฌa ๏ซ b
a *b ๏ฝ ๏ญ
๏ฎa ๏ซ b ๏ญ 7 if a ๏ซ b ๏ณ 7
Write the operation table of the operation * and prove that zero is the identity for this
operation and each element a ๏น 0 of the set of the invertible with 7-a being the inverse
of a.
7
INVERSE TRIGONOMETRIC FUNCTIONS
Introduction
Principal Value Branch Table
Principal Value
Functions
Domain
Branches
y = sin-1 x
[-1, 1]
๏ฉ ๏ฐ ๏ฐ๏น
๏ช๏ซ๏ญ 2 , 2 ๏บ๏ป
y = cos-1 x
[-1, 1]
๏0,๏ฐ ๏
y = cosec-1 x
R โ (-1, 1)
๏ฉ ๏ฐ ๏ฐ๏น
๏ช๏ซ๏ญ 2 , 2 ๏บ๏ป ๏ญ ๏ป0๏ฝ
y = sec-1 x
R โ (-1, 1)
๏0, ๏ฐ ๏ ๏ญ ๏ฌ๏ญ๏ฐ ๏ผ๏ฝ
y = tan-1 x
R
๏ฆ ๏ฐ ๏ฐ๏ถ
๏ง๏ญ , ๏ท
๏จ 2 2๏ธ
y = cot-1 x
R
๏จ0,๏ฐ ๏ฉ
๏ฎ2๏พ
Properties of Inverse Trigonometric Functions:
For suitable Values of domain, we have:
1.
(a) y = sin-1 x ๏ x = sin y
(b) x = sin y ๏ y = sin-1 x
2.
(a) sin (sin-1 x) = x
(b) sin-1 (sin x) = x
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
3.
(a) sin-1 ๏ง ๏ท = cosec-1 x
(b) cos-1 ๏ง ๏ท = sec-1 x
(c) tan-1 ๏ง ๏ท = cot-1 x
๏จx๏ธ
๏จx๏ธ
๏จx๏ธ
4.
5.
x
(a) cos-1 (-x) = ๏ฐ - cos-1 x
(a) sin-1 (-x) = - sin-1 x
6.
(a) sin-1x + cos-1x =
7.
๏ญ1
๏ญ1
๏ญ1
(a) tan x ๏ซ tan y ๏ฝ tan
8.
2 tan ๏ญ1 x ๏ฝ sin ๏ญ1
9.
(a) sin-1x + sin-1y = sin-1 x 1 ๏ญ y 2 ๏ซ y 1 ๏ญ x 2
๏ฐ
(b) tan-1x + cot-1x =
2
x๏ซ y
1 ๏ญ xy
๏จ
๏จx
1๏ญ y2 ๏ญ y 1๏ญ x2
๏จ
๏จxy ๏ซ
(a) cos-1x + cos -1y = cos -1 xy ๏ญ
(b) cos -1x - cos -1y = cos -1
๏ฐ
2
(c) sec-1 (-x) = ๏ฐ - sec-1 x
(c) cosec-1 (-x) = - cosec-1
(c) cosec-1x + sec-1x =
๏ญ1
๏ญ1
๏ญ1
(b) tan x ๏ญ tan y ๏ฝ tan
2
2x
2x
๏ญ1 1 ๏ญ x
๏ฝ
cos
๏ฝ tan ๏ญ1
2
2
1๏ซ x
1๏ซ x
1๏ญ x2
(b) sin-1x - sin-1y = sin-1
10.
(b) cot-1 (-x) = ๏ฐ - cot-1 x
(b) tan-1 (-x) = - tan-1 x
๏ฉ
๏ฉ
๏จ1 ๏ญ x ๏ฉ๏จ1 ๏ญ y ๏ฉ ๏ฉ
๏จ1 ๏ญ x ๏ฉ๏จ1 ๏ญ y ๏ฉ ๏ฉ
2
2
2
2
x๏ญ y
1 ๏ซ xy
๏ฐ
2
8
Important Solved Problems
1.
Write the principal value of tan ๏ญ1 3 ๏ญ sec ๏ญ1 ๏จ๏ญ 2๏ฉ .
Solution:
๏ฐ๏ถ
๏ฐ๏ถ
๏ฆ
๏ฆ
tan ๏ญ1 3 ๏ญ sec ๏ญ1 ๏จ๏ญ 2๏ฉ ๏ฝ tan ๏ญ1 ๏ง tan ๏ท ๏ญ sec ๏ญ1 ๏ง ๏ญ sec ๏ท
3๏ธ
3๏ธ
๏จ
๏จ
๏ฉ ๏ฆ
๏ฐ
๏ฐ ๏ถ๏น ๏ฐ ๏ฆ
๏ฐ๏ถ
๏ฐ
๏ฝ ๏ญ sec ๏ญ1 ๏ชsec๏ง ๏ฐ ๏ญ ๏ท๏บ ๏ฝ ๏ญ ๏ง ๏ฐ ๏ญ ๏ท ๏ฝ ๏ญ
3
3 ๏ธ๏ป 3 ๏จ
3๏ธ
3
๏ซ ๏จ
2.
Using principal value , evaluate the following:
๏ฆ 3๏ฐ ๏ถ
sin ๏ญ1 ๏ง sin
๏ท
5 ๏ธ
๏จ
Solution:
๏ฆ 3๏ฐ ๏ถ 3๏ฐ 3๏ฐ ๏ฉ ๏ฐ ๏ฐ ๏น
sin ๏ญ1 ๏ง sin
as
๏ ๏ญ ,
๏ท๏น
5 ๏ธ 5
5 ๏ช๏ซ 2 2 ๏บ๏ป
๏จ
2๏ฐ
๏ฆ 3๏ฐ ๏ถ
๏ฆ
๏ญ1 ๏ฉ
sin ๏ญ1 ๏ง sin
๏ท ๏ฝ sin ๏ชsin ๏ง ๏ฐ ๏ญ
5 ๏ธ
5
๏จ
๏ซ ๏จ
๏ฐ
3.
If tan ๏ญ1 3 ๏ซ cot ๏ญ1 x ๏ฝ , find x
2
Solution:
๏ฐ
tan ๏ญ1 3 ๏ซ cot ๏ญ1 x ๏ฝ
2
๏ฐ
cot ๏ญ1 x ๏ฝ ๏ญ tan ๏ญ1 3
2
2๏ฐ ๏ถ 2๏ฐ
๏ถ๏น
๏ญ1 ๏ฆ
๏ท๏บ ๏ฝ sin ๏ง sin
๏ท๏ฝ
5 ๏ธ 5
๏ธ๏ป
๏จ
tan-1x + cot-1x =
๏ฐ
2
= cot ๏ญ1 3 ๏ x ๏ฝ 3
๏ญ1 ๏ฆ 12 ๏ถ
๏ญ1 ๏ฆ 3 ๏ถ
๏ญ1 ๏ฆ 56 ๏ถ
Prove that: cos ๏ง ๏ท ๏ซ sin ๏ง ๏ท ๏ฝ sin ๏ง ๏ท
๏จ 13 ๏ธ
๏จ5๏ธ
๏จ 65 ๏ธ
Solution:
4.
12
๏ฆ 12 ๏ถ
cos ๏ญ1 ๏ง ๏ท ๏ฝ x ๏ cos x ๏ฝ
13
๏จ 13 ๏ธ
2
5
3
๏ฆ 12 ๏ถ
๏ฆ3๏ถ
sin x ๏ฝ 1 ๏ญ cos 2 x ๏ฝ 1 ๏ญ ๏ง ๏ท ๏ฝ ๏ and sin ๏ญ1 ๏ง ๏ท ๏ฝ y ๏ sin y ๏ฝ
13
5
๏จ 13 ๏ธ
๏จ5๏ธ
2
4
๏ฆ3๏ถ
cos y ๏ฝ 1 ๏ญ sin y ๏ฝ 1 ๏ญ ๏ง ๏ท ๏ฝ
5
๏จ5๏ธ
sin (x + y) = sin x cos y + cos x sin y
2
9
๏ฆ 5 ๏ถ๏ฆ 4 ๏ถ ๏ฆ 12 ๏ถ๏ฆ 3 ๏ถ 56
๏ง ๏ท๏ง ๏ท ๏ซ ๏ง ๏ท๏ง ๏ท ๏ฝ
๏จ 13 ๏ธ๏จ 5 ๏ธ ๏จ 13 ๏ธ๏จ 5 ๏ธ 65
=
๏ฆ 56 ๏ถ
๏ฆ 12 ๏ถ
๏ฆ3๏ถ
๏ฆ 56 ๏ถ
๏ x ๏ซ y ๏ฝ sin ๏ญ1 ๏ง ๏ท ๏ cos ๏ญ1 ๏ง ๏ท ๏ซ sin ๏ญ1 ๏ง ๏ท ๏ฝ sin ๏ญ1 ๏ง ๏ท
๏จ 65 ๏ธ
๏จ 13 ๏ธ
๏จ5๏ธ
๏จ 65 ๏ธ
๏ฉ 1 ๏ซ sin x ๏ซ 1 ๏ญ sin
๏ญ1
Prove that cot ๏ช
๏ซ 1 ๏ซ sin x ๏ญ 1 ๏ญ sin
Solution:
5.
x๏น x
๏ฆ ๏ฐ๏ถ
๏บ ๏ฝ , x ๏ ๏ง 0, ๏ท
x๏ป 2
๏จ 4๏ธ
๏ฉ 1 ๏ซ sin x ๏ซ 1 ๏ญ sin x ๏น
cot ๏ญ1 ๏ช
๏บ
๏ซ 1 ๏ซ sin x ๏ญ 1 ๏ญ sin x ๏ป
๏ฉ 1 ๏ซ sin x ๏ซ 1 ๏ญ sin x
1 ๏ซ sin x ๏ซ 1 ๏ญ sin
๏ฝ cot ๏ญ1 ๏ช
๏ด
1 ๏ซ sin x ๏ซ 1 ๏ญ sin
๏ซ 1 ๏ซ sin x ๏ญ 1 ๏ญ sin x
๏ฉ
๏น
x๏น
๏ญ1 1 ๏ซ sin x ๏ซ 1 ๏ญ sin x ๏ซ 2 1 ๏ซ sin x 1 ๏ญ sin x
๏บ ๏๏ฝ cot ๏ช
๏บ
๏จ1 ๏ซ sin x ๏ฉ ๏ญ ๏จ1 ๏ญ sin x ๏ฉ
x๏ป
๏ซ
๏ป
x ๏น
๏ฉ
2 cos 2
2
๏ฉ
๏น
๏ช
2
๏ซ
2
1
๏ญ
sin
x
1
๏ซ
cos
x
๏น
๏ญ1 ๏ฉ
๏ญ1
2 ๏บ ๏ฝ cot ๏ญ1 ๏ฆ๏ง cot x ๏ถ๏ท ๏ฝ x
๏ฝ cot ๏ญ1 ๏ช
๏๏ฝ
cot
๏บ ๏ฝ cot ๏ช
๏ช
๏บ
2 sin x
2๏ธ 2
๏ซ sin x ๏บ๏ป
๏จ
๏ช๏ซ
๏บ๏ป
๏ช 2 sin x cos x ๏บ
2
2๏ป
๏ซ
๏ฐ
๏ญ1 ๏ฆ 1 ๏ถ
๏ญ1 ๏ฆ 1 ๏ถ
๏ญ1 ๏ฆ 1 ๏ถ
๏ญ1 ๏ฆ 1 ๏ถ
Prove the following: tan ๏ง ๏ท ๏ซ tan ๏ง ๏ท ๏ซ tan ๏ง ๏ท ๏ซ tan ๏ง ๏ท ๏ฝ .
๏จ 3๏ธ
๏จ5๏ธ
๏จ7๏ธ
๏จ8๏ธ 4
Solution:
6.
1
1๏ถ ๏ฆ
1
1๏ถ
๏ฆ
LHS ๏ง tan ๏ญ1 ๏ซ tan ๏ญ1 ๏ท ๏ซ ๏ง tan ๏ญ1 ๏ซ tan ๏ญ1 ๏ท
3
5๏ธ ๏จ
7
8๏ธ
๏จ
๏ฆ 1 1 ๏ถ
๏ฆ 1 1 ๏ถ
๏ซ ๏ท
๏ง
๏ง ๏ซ ๏ท
๏ฝ tan ๏ญ1 ๏ง 3 5 ๏ท ๏ซ tan ๏ญ1 ๏ง 7 8 ๏ท
๏ง1๏ญ 1 ๏ด 1 ๏ท
๏ง1๏ญ 1 ๏ด 1 ๏ท
๏ง
๏ท
๏ง
๏ท
๏จ 7 8๏ธ
๏จ 3 5๏ธ
๏ฆ8๏ถ
๏ฆ 15 ๏ถ
๏ฆ4๏ถ
๏ฆ3๏ถ
๏ฝ tan ๏ญ1 ๏ง ๏ท ๏ซ tan ๏ญ1 ๏ง ๏ท ๏ฝ tan ๏ญ1 ๏ง ๏ท ๏ซ tan ๏ญ1 ๏ง ๏ท
๏จ 14 ๏ธ
๏จ 55 ๏ธ
๏จ7๏ธ
๏จ 11 ๏ธ
๏ฆ 4 3 ๏ถ
๏ซ
๏ง
๏ท
๏ฐ
๏ฆ 65 ๏ถ
๏ฝ tan ๏ญ1 ๏ง 7 11 ๏ท ๏ฝ tan ๏ญ1๏ง ๏ท ๏ฝ tan ๏ญ1 1 ๏ฝ ๏ฝ RHS
4
๏ง1๏ญ 4 ๏ด 3 ๏ท
๏จ 65 ๏ธ
๏ง
๏ท
๏จ 7 11 ๏ธ
7.
๏ฐ
๏ญ1 ๏ฆ x ๏ญ 1 ๏ถ
๏ญ1 ๏ฆ x ๏ซ 1 ๏ถ
If tan ๏ง
๏ท ๏ซ tan ๏ง
๏ท ๏ฝ , then find the value of x.
๏จ x๏ญ2๏ธ
๏จ x๏ซ2๏ธ 4
10
๏ฐ
๏ฆ x ๏ญ1 ๏ถ
๏ญ1 ๏ฆ x ๏ซ 1 ๏ถ
tan ๏ญ1 ๏ง
๏ท ๏ซ tan ๏ง
๏ท๏ฝ
๏จ x ๏ญ2๏ธ
๏จ x ๏ซ 2๏ธ 4
๏ฆ x ๏ญ1 ๏ถ
๏ญ1 ๏ฆ x ๏ซ 1 ๏ถ
๏ญ1
tan ๏ญ1 ๏ง
๏ท ๏ซ tan ๏ง
๏ท ๏ฝ tan 1
x
๏ญ
2
x
๏ซ
2
๏จ
๏ธ
๏จ
๏ธ
Solution:
1.
x ๏ซ1 ๏ถ
๏ฆ
๏ง1๏ญ
๏ท
๏ญ1 ๏ฆ x ๏ญ 1 ๏ถ
๏ญ1
๏ญ1 ๏ฆ x ๏ซ 1 ๏ถ
๏ญ1 ๏ง
x
๏ซ
2
๏ท ๏ฝ๏ฝ tan ๏ญ1 ๏ฆ๏ง 1 ๏ถ๏ท
tan ๏ง
๏ท ๏ฝ tan 1 ๏ญ tan ๏ง
๏ท ๏ฝ tan
x ๏ซ1 ๏ท
๏ง
๏จ x ๏ญ2๏ธ
๏จ x ๏ซ 2๏ธ
๏จ 2x ๏ซ 3 ๏ธ
๏ง1 ๏ซ
๏ท
x๏ซ2๏ธ
๏จ
x ๏ญ1
1
1
1
๏
๏ฝ
๏ 2x 2 ๏ญ 1 ๏ฝ 0 ๏ x 2 ๏ฝ ๏ x ๏ฝ ๏ฑ
x ๏ญ 2 2x ๏ซ 3
2
2
PRACTICE PROBLEMES:
Level-1
Write the Principal value of the following:
(i) tan-1 ๏จ๏ญ 3 ๏ฉ
(ii) sin-1 ๏ฆ๏ง ๏ญ 1 ๏ถ๏ท
(iii) cos-1 ๏ฆ๏ง ๏ญ
๏จ
2.
Evaluate: cot
3.
4.
5.
-1
1.
๏tan
๏ญ1
a ๏ซ cot ๏ญ1 a
2๏ธ
๏.
-1
Prove: 3sin x = sin (3x-4x3)
Find x if sec-1(๏2) + cosec-1x = ๏ฐ/2
Solve tan-12x + tan-13x = ๏ฐ/4
Level-2
Write the principal value of the following:
2๏ฐ ๏ถ
2๏ฐ ๏ถ
๏ฆ
๏ญ1 ๏ฆ
cos ๏ญ1 ๏ง cos
๏ท ๏ซ sin ๏ง sin
๏ท
3 ๏ธ
3 ๏ธ
๏จ
๏จ
3.
4.
๏ฉ 1 ๏ซ x 2 ๏ญ 1๏น
๏ญ1
tan
๏ช
๏บ,
Write in the simplest form:
x
๏บ๏ป
๏ซ๏ช
-1
-1
-1
Prove that sin (8/17) + sin (3/5) = tan (77/36).
Prove that 2 tan-1(1/2)+ tan-1(1/7) = tan-1(31/17)
5.
Solve for x
6.
Find the value of x if sin[cot -1(x+1)]=cos(tan-1x).
3
17 ๏ฐ
2 sin ๏ญ1 ๏ญ tan ๏ญ1
๏ฝ
5
31 4
Level-3
2.
7.
๏จ
tan ๏ญ1
2
2x
2๏ฐ
๏ญ1 1 ๏ญ x
๏ซ
cot
๏ฝ
2
2x
3
1๏ญ x
2.
3.
๏ฉ 1๏ซ x ๏ญ 1๏ญ x ๏น ๏ฐ 1
๏ญ1
๏ญ1
Prove that : tan ๏ช
๏บ ๏ฝ ๏ญ cos x
4
2
๏ซ 1๏ซ x ๏ซ 1๏ญ x ๏ป
Prove that: sin-1(12/13) + cos-1(4/5) + tan-1(63/16) = ๏ฐ.
Prove that: tan-11+ tan-12 + tan-13 = ๏ฐ.
4.
Prove that: tan ๏ญ1
1.
1 ๏ถ
๏ท
2๏ธ
๏ฆ x๏ญ y๏ถ ๏ฐ
x
๏ท๏ท ๏ฝ
๏ญ tan ๏ญ1 ๏ง๏ง
y
๏จ x๏ซ y๏ธ 4
x๏น 0
11
๏ฉ
๏ฆ 1 ๏ญ x ๏ถ๏น
๏ท๏บ .
๏ท
1
๏ซ
x
๏จ
๏ธ๏บ๏ป
5.
๏ญ1
Write in the simplest form: cos ๏ช2 tan ๏ง๏ง
6.
If t an ๏ญ1 x ๏ซ tan ๏ญ1 y ๏ซ tan ๏ญ1 z ๏ฝ
7.
๏ฉ cos ๏ก ๏ซ cos ๏ข ๏น
๏ข๏น
๏ฉ ๏ก
๏ฝ 2. tan ๏ญ1 ๏ชtan . tan ๏บ .
Prove that cos ๏ญ1 ๏ช
๏บ
2
2๏ป
๏ซ
๏ซ1 ๏ซ cos ๏ก . cos ๏ข ๏ป
8.
๏ฉ 1 ๏ซ cos x ๏ซ 1 ๏ญ cos x ๏น ๏ฐ x
3๏ฐ
Prove that tan ๏ญ1 ๏ช
.
๏บ ๏ฝ ๏ญ ; If ๏ฐ ๏ผ x ๏ผ
2
๏ซ 1 ๏ซ cos x ๏ญ 1 ๏ญ cos x ๏ป 4 2
9.
If cos ๏ญ1 x ๏ซ cos ๏ญ1 y ๏ซ cos ๏ญ1 z ๏ฝ ๏ฐ . Then show that x2+y2+z2+2xyz=1.
๏ช๏ซ
๏ฐ
2
, x, y, z>0 then find the value of xy + yz + zx.
12
MATRICES & DETERMINANTS
SCHEMATIC DIAGRAM
INTRODUCTION:
MATRIX: If mn elements can be arranged in the form of m row and n column in a
rectangular array then this arrangement is called a matrix.
Order of a matrix: A matrix having m row and n column is called a matrix of ๐ × ๐ order.
Addition and subtraction of matrices: Two matrices A and B can be added or subtracted if
they are of the same order i.e. if A and B are two matrices of order ๐ × ๐ then A ± B is also
a matrix of order m×n.
Multiplication of matrices: The product of two matrices A and B can be defined if the
number of rows of B is equal to the number of columns of A i.e. if A be an ๐ × ๐ matrix and
B be an ๐ × ๐ matrix then the product of matrices A and B is another matrix of order ๐ × ๐.
Transpose of a Matrix: If A = [aij] be an m × n matrix, then the matrix obtained by
interchanging.
the rows and columns of A is called the transpose of A. Transpose of the matrix A is
denoted by ๐ด/ ๐๐ ๐ด๐ .
Properties of transpose of the Matrices: For any matrices A and B of suitable orders, we
have
(i)
๏จA ๏ฉ
T T
๏ฝA
(๐๐)(๐พ๐ด)๐ = ๐พ๐ด๐ (๐๐๐)(๐ด + ๐ต)๐ = ๐ด๐ + ๐ต๐ (๐๐ฃ)(๐ด๐ต)๐ = ๐ต๐ ๐ด๐
Symmetric Matrix: A square matrix M is said to be symmetric if ๐ด๐ = ๐ด
๐ฅ ๐ฆ ๐ง
๐ ๐
e.g.[
] , [๐ฆ ๐ข ๐ฃ ]
๐ ๐
๐ง ๐ฃ ๐ค
Note: there will be symmetry about the principal diagonal in Symmetric Matrix.
Skew symmetric Matrix: A square matrix M is said to be skew symmetric if ๐ด๐ = โ๐ด
0
๐ ๐
e.g.[ โ๐ 0 ๐]
โ๐ โ๐ 0
Note: All the principal diagonal element of a skew symmetric Matrix are zero.
Determinant: For every Square Matrix we can associate a number which is called the
Determinant of the square Matrix.
Determinant of a matrix of order one
Let A = [a ] be the matrix of order 1, then determinant of A is defined to be equal to a.
Determinant of a matrix of order two
๐ ๐
Let A= [
] be a Square Matrix of order2× 2 then the determinant of A is denoted by |๐ด|
๐ฅ ๐ฆ
๐ ๐
and defined by |๐ด| = |
|= ay-bx
๐ฅ ๐ฆ
13
Determinant of a matrix of order 3× ๐: Let us consider the determinant of a square matrix
of order
๐ ๐ ๐
3× 3, |๐ด|= |๐ ๐ ๐|
๐ฅ ๐ฆ ๐ง
Expansion along first row |๐ด| = ๐(๐๐ง โ ๐ฆ๐) โ ๐(๐๐ง โ ๐ฅ๐) + ๐(๐๐ฆ โ ๐๐ฅ)
We can expand the determinant with respect to any row or any column.
Minors and cofactors:
Minor of an element๐๐๐ of a determinant is the determinant obtained by
deleting its ith row and jth column in which element๐๐๐ lies. Minor of an elemen๐๐๐ is
denoted by ๐๐๐ .
Cofactors: cofactors of an element๐๐๐ ๐๐๐๐๐ก๐๐ by ๐ด๐๐ and is defined by ๐ด๐๐ = (โ1)๐+๐ ๐๐๐
where ๐๐๐ is the minor of ๐๐๐ .
๐ผ ๐ฝ
Adjoint of a Matrix: Let A = [
] be a Matrix of order 2 × 2
๐พ ๐ฟ
๐น โ๐ท
Then adj(A) = [
]
โ๐ธ ๐ถ
๐ฅ ๐ฆ ๐ง
Again letA = [๐ ๐ ๐] be a Matrix of order 3 × 3
๐ ๐ ๐
๐ ๐
๐ ๐ ๐
๐ ๐
|
| โ|
| |
|
๐ ๐
๐ ๐
๐ ๐
๐ฆ ๐ง
๐ฅ ๐ฆ
๐ฅ ๐ง
Then adj(A) = โ |๐ ๐ | |๐ ๐ | โ |๐ ๐ |
=
๐ฆ ๐ง
๐ฅ ๐ง
๐ฅ ๐ฆ
|
|
โ
|
|
|
[ ๐ ๐
๐ ๐
๐ ๐| ]
๐๐ โ ๐๐
[โ(๐ฆ๐ โ ๐๐ง)
๐ฆ๐ โ ๐๐ง
๐
โ(๐๐ โ ๐๐)
๐๐ โ ๐๐
๐๐ โ ๐๐
๐ฅ๐ โ ๐๐ง
โ(๐๐ฅ โ ๐๐ฆ)] = [ ๐๐ โ ๐๐
๐๐ โ ๐๐
โ(๐ฅ๐ โ ๐๐ง)
๐ฅ๐ โ ๐๐ฆ
๐๐ง โ ๐๐ฆ
๐ฅ๐ โ ๐๐ง
๐๐ฆ โ ๐๐ฅ
Inverse of a Matrix: Inverse of a Square Matrix A is defined as๐จโ๐ =
๐ฆ๐ โ ๐๐ง
๐๐ง โ ๐ฅ๐ ]
๐ฅ๐ โ ๐๐ฆ
๐๐
๐(๐จ)
|๐จ|
Note: If A be a given Square Matrix of order n then
(i)
A(adj(A) = adj(A)A=|๐จ|๐ฐwhere I is the Identity Matrix of order n.
(ii)
A square Matrix A is said to be singular and non-singular according as |๐จ| =
๐ ๐๐๐
|๐จ| โ ๐
(iii) |๐๐
๐(๐จ)|= |๐จ|๐โ๐ (๐ญ๐๐ ๐ ๐๐๐๐๐๐ ๐ด๐๐๐๐๐ ๐๐ ๐๐๐
๐๐ ๐ × ๐ |๐๐
๐(๐จ)| = |๐จ|๐ )
IMPORTANT SOLVED PROBLEMS
โ2
Q1. If A=[ 4 ] , ๐ต = [1 3 โ6] , Verify that (AB)1=B1A1
5
Solution: - We have
โ2
If A=[ 4 ] , ๐ต = [1 3 โ6]
5
14
โ2 โ6 12
โ6] = [ 4 12 โ24]
5 15 โ30
1
Now
A1 = [โ2 4 5] , B1= [ 3 ]
โ6
1
โ2
4
5
B1A1 = [ 3 ] [โ2 4 5] = [โ6 12
15 ] = (AB)1
โ6
12 โ24 โ30
Clearly (AB)1=B1A1
2
10
โ1
Q2. If ๐ฅ [ ] + ๐ฆ [ ] = [ ] then find the value of x and y.
3
5
1
2
10
โ1
Sol. Given ๐ฅ [ ] + ๐ฆ [ ] = [ ]
3
5
1
โ๐ฆ
2๐ฅ
โ
๐ฆ
2๐ฅ
10
10
[ ] + [ ๐ฆ ] = [ ]or[
]=[ ]
3๐ฅ + ๐ฆ
3๐ฅ
5
5
So 2x โ y = 10 and 3x + y = 5
On solving we get x = 3 and y = -4
๐๐๐ ๐ฅ โ๐ ๐๐๐ฅ 0
Q3. If F(x) = [ ๐ ๐๐๐ฅ ๐๐๐ ๐ฅ 0] prove that F(x) F(y) = F(x+y)
0
0
1
๐๐๐ ๐ฆ โ๐ ๐๐๐ฆ 0
๐๐๐ ๐ฅ โ๐ ๐๐๐ฅ 0
Sol. Given F(x) = [ ๐ ๐๐๐ฅ ๐๐๐ ๐ฅ 0] so F(y) = [ ๐ ๐๐๐ฆ ๐๐๐ ๐ฆ 0]
0
0
1
0
0
1
๐๐๐ ๐ฅ โ๐ ๐๐๐ฅ 0 ๐๐๐ ๐ฆ โ๐ ๐๐๐ฆ 0
Hence F(x) .F(y) = [ ๐ ๐๐๐ฅ ๐๐๐ ๐ฅ 0] [ ๐ ๐๐๐ฆ ๐๐๐ ๐ฆ 0] =
0
0
1
0
0
1
๐๐๐ ๐ฅ๐๐๐ ๐ฆ โ ๐ ๐๐๐ฅ๐ ๐๐๐ฆ โ๐๐๐ ๐ฅ๐ ๐๐๐ฆ โ ๐ ๐๐๐ฅ๐๐๐ ๐ฆ 0
[๐ ๐๐๐ฅ๐๐๐ ๐ฆ + ๐๐๐ ๐ฅ๐ ๐๐๐ฆ โ๐ ๐๐๐ฅ๐ ๐๐๐ฆ + ๐๐๐ ๐ฅ๐๐๐ ๐ฆ 0]
0
0
1
cos(๐ฅ + ๐ฆ) โsin(๐ฅ + ๐ฆ)
= [ sin(๐ฅ + ๐ฆ) cos(๐ฅ + ๐ฆ)
0
0
Hence F(x) F(y) = F(x+y)
Then
โ2
AB =[ 4 ] [1 3
5
0
0]
1
Q4. Express the given Matrix as the sum of a symmetric and skew symmetric matrix
6 โ2 2
A= [โ2 3 โ1]
2 โ1 3
6 โ2 2
Sol. Here ๐ด๐ = [โ2 3 โ1]
2 โ1 3
12 โ4 4
6 โ2 2
1
1
P = 2 (๐ด + ๐ด๐ ) = 2 [โ4 6 โ2] = [โ2 3 โ1]
4 โ2 6
2 โ1 3
1
๐
๐
Now ๐ = ๐ so
P = 2 (๐ด + ๐ด ) is a symmetric Matrix.
0 0 0
0 0 0
1
1
๐
Also let Q = = 2 (๐ด โ ๐ด ) = 2 [0 0 0] = [0 0 0]
0 0 0
0 0 0
15
๐ ๐ = โ๐ Hence Q is an Skew Symmetric Matrix.
6 โ2 2
0 0 0
6 โ2 2
Now P + Q= [โ2 3 โ1] + [0 0 0] = [โ2 3 โ1] = ๐ด
2 โ1 3
0 0 0
2 โ1 3
Thus A is represented as the sum of a symmetric and skew symmetric matrix.
๐โ๐โ๐
2๐
2๐
Q5. Using the property of determinant prove that| 2๐
๐โ๐โ๐
2๐ | =
2๐
2๐
๐โ๐โ๐
3
(๐ + ๐ + ๐)
Sol.Applying๐
1 โ ๐
1 + ๐
2 + ๐
3 ๐ค๐ ๐๐๐ก
๐+๐+๐ ๐+๐+๐ ๐+๐+๐
L.H.S = | 2๐
๐โ๐โ๐
2๐ |
2๐
2๐
๐โ๐โ๐
Taking common a + b + c from first Row we get
1
1
1
L.H.S =(a + b+ c) |2๐ ๐ โ ๐ โ ๐
2๐ |
2๐
2๐
๐โ๐โ๐
Now applying ๐ถ2 โ ๐ถ2 โ ๐ถ1 , ๐ถ3 โ ๐ถ3 โ ๐ถ1 ๐ค๐ ๐๐๐ก
1
0
0
0
L.H.S =(a + b+ c) |2๐ โ(๐ + ๐ + ๐)
|
2๐
0
โ(๐ + ๐ + ๐)
Expanding along first Row L.H.S = (a+b+c)[(๐ + ๐ + ๐)2 โ 0] = (๐ + ๐ + ๐)3 = R.H.S
Hence proved
Q6. Solve the system of equations x + 2y โ 3z = - 4, 2x + 3y + 2z = 2, 3x โ 3y โ 4z = 11
Sol. The given system of equation can be written as A X = B where
๐ฅ
1 2 โ3
โ4
๐ฆ
A = [2 3
2 ]๐ = [ ] ๐ต = [ 2 ]
๐ง
3 โ3 โ4
11
1 2 โ3
Now |๐ด| = |2 3
2 | = โ6 + 28 + 45 = 67
3 โ3 โ4
โ6 17 13
โ6 14 โ15 ๐
๐๐
๐(๐จ)
adj(A) = [ 17 5
]
=
[
๐จโ๐ = |๐จ|
=
14
5 โ8] ๐ต๐๐
9
โ15 9 โ1
13 โ8 โ1
โ6 17 13
๐
[ 14
5 โ8]
๐๐
โ15 9 โ1
24 + 34 + 143
โ6 17 13 โ4
๐
๐
โ๐
Hence ๐ = ๐จ ๐ฉ = ๐๐ [ 14
5 โ8] [ 2 ] = ๐๐ [โ56 + 10 โ 88]
60 + 18 โ 11
โ15 9 โ1 11
๐ฅ
201
3
๐
So[๐ฆ] = ๐๐ [โ134] = [โ2]
๐ง
67
1
Hence x = 3 , y = -2 , z = 1
Flow chart:
16
Step 1.Write the given system of equation in the form of A X = B
Step2. Find |๐จ|
Step3. Find adj(A)
Step4. Find ๐จโ๐ =
๐๐
๐(๐จ)
|๐จ|
โ๐
Step5. Find ๐ฟ = ๐จ ๐ฉ
Step6 Find the value of x , y and z
ASSIGNMENTS
(i). Order, Addition, Multiplication and transpose of matrices:
LEVEL I
1. If a matrix has 6 elements, what are the possible orders it can have?
2. Construct a 3 × 2 matrix whose elements are given by aij =
3.
If A =
4. If A =
, B=
and B =
,
|i โ 3j |
then find A โ2 B.
, write the order of AB and BA.
LEVEL II
1. For the following matrices A and B, verify (AB)T = BTAT, where A =
, B=
.
2. Give example of matrices A & B such that AB = O, but BA โ O, where O is a zero matrix and
A, B are both non zero matrices.
3. If B is skew symmetric matrix, write whether the matrix (ABAT) is symmetric or skew symmetric.
4. If A =
and I =
, find a and b so that A2 + aI = bA
LEVEL III
1. If
A =
, then find the value of A2 โ3A + 2I
2. Express the matrix A as the sum of a symmetric and a skew symmetric matrix, where:
A=
3. If A = [
๐๐๐ ๐
โ๐ ๐๐๐
๐ ๐๐๐
๐๐๐ ๐๐
] ๐กโ๐๐ ๐๐๐๐ฃ๐ ๐กโ๐๐ก = ๐ด๐ = [
๐๐๐ ๐
โ๐ ๐๐๐๐
(ii) Cofactors & Adjoint of a matrix
LEVEL I
1. Find the co-factor of a12
in A =
2. Find the adjoint of the matrix A =
Verify A(adjA) = (adjA) A =
LEVEL II
I if
๐ ๐๐๐๐
] , ๐๐๐
๐๐๐ ๐๐
17
1. A =
2. A =
(iii)Inverse of a Matrix & Applications
LEVEL I
1.
2.
If A =
, write A-1 in terms of A
If A is square matrix satisfying A2 = I, then what is the inverse of A ?
3.
For what value of k , the matrix A =
LEVEL II
is not invertible ?
1. If A =
, show that A2 โ5A โ 14I = 0. Hence find A-1
2. If A, B, C are three non-zero square matrices of same order, find the condition
on A such that AB = AC ๏ B = C.
3. Find the number of all possible matrices A of order 3 × 3 with each entry 0 or 1 and
๏ฉ x ๏น ๏ฉ1๏น
for which A๏ช y ๏บ ๏ฝ ๏ช0๏บ has exactly two distinct solutions.
๏ช ๏บ ๏ช ๏บ
๏ช๏ซ z ๏บ๏ป ๏ช๏ซ0๏บ๏ป
LEVEL III
1.
If A =
, find A-1 and hence solve the following system of
equations: 2x โ 3y + 5z = 11,
3x + 2y โ 4z = - 5, x + y โ 2z = - 3.
2.
Using matrices, solve the following system of equations:
(i) x + 2y - 3z = - 4 ,
2x + 3y + 2z = 2 ,
3x - 3y โ 4z = 11
(ii) 4x + 3y + 2z = 60 ,
x + 2y + 3z = 45 ,
6x + 2y + 3z = 70
3. Find the product AB, where A =
,B=
and use it to
Solve the equations x โ y = 3, 2x + 3y + 4z = 17, y + 2z = 7
1 1 1
๏ญ ๏ซ ๏ฝ4
x y z
2 1 3
4. Using matrices solve the following system of equations:
๏ซ ๏ญ ๏ฝ0
x y z
1 1 1
๏ซ ๏ซ ๏ฝ2
x y z
5. A trust caring for indicate children gets rupees 30,000/- every month from its donors. The
trust spends half of the funds received for medical and educational care of the children and
for that it charges 2% of the spent amount from them and deposits the balance note in a
private bank to get the money multiplied so that in future the trust goes on functioning
regularly. What % of interest should the trust get from the bank to get a total of rupees 1800/-
18
every month? Use matrix method to find the rate of interest? Do u think people should donate
to such trusts?
6. Using elementary transformations, find the inverse of the matrix
(iv)To Find The Difference Between
LEVEL I
1. Evaluate
Cos15 Sin15
Sin 75 Cos75
2. What is the value of
, where I is identity matrix of order 3?
3. If A is non singular matrix of order 3 and
= 3, then find
4. For what valve of a,
1.
2.
is a singular matrix?
LEVEL II
If A is a square matrix of order 3 such that
= 64, find
If A is a nonsingular matrix of order 3 and
= 7, then find
LEVEL III
3
1. If A =
and
= 125, then find a.
2. A square matrix A, of order 3, has
= 5, find
(v).Properties of Determinants
LEVEL I
1.
2.
1.
2.
3.
Find positive valve of x if
=
Evaluate
LEVEL II
Using properties of determinants, prove the following :
b๏ซc
a
a
b
c๏ซa
b ๏ฝ 4abc
c
c
a๏ซb
1 ๏ซ a 2 ๏ญ b2
2ab
๏ญ 2b
2
2
2ab
1๏ญ a ๏ซ b
2a
๏ฝ 1 ๏ซ a 2 ๏ซ b2
2b
๏ญ 2a
1๏ญ a 2 ๏ญ b2
๏จ
๏ฉ
3
= (1 + pxyz)(x - y)(y - z) (z - x)
LEVEL III
1. Using properties of determinants, solve the following for x :
19
a.
= 0
b.
= 0
c.
= 0
2. If a, b, c, are positive and unequal, show that the following determinant is negative:
=
3.
a ๏ซ1
ab
ac
2
ab
b ๏ซ1
bc ๏ฝ 1 ๏ซ a 2 ๏ซ b 2 ๏ซ c 2
ca
cb
c2 ๏ซ 1
4.
a
b
c
a ๏ญ b b ๏ญ c c ๏ญ a ๏ฝ a 3 ๏ซ b 3 ๏ซ c3 ๏ญ 3abc
b๏ซc c๏ซa a๏ซb
5.
b 2c 2
c 2a 2
a 2b2
2
bc b ๏ซ c
ca c ๏ซ a ๏ฝ 0
ab a ๏ซ b
๏ญ bc
6.
b 2 ๏ซ bc c 2 ๏ซ bc
a 2 ๏ซ ac
๏ญ ac
c 2 ๏ซ ac ๏ฝ (ab ๏ซ bc ๏ซ ca ) 3
a 2 ๏ซ ab b 2 ๏ซ ab
๏ญ ab
= 2abc( a + b + c)3
7.
8.
If a, b, c are real numbers, and
b๏ซc c๏ซa a๏ซ b
c๏ซa a๏ซ b b๏ซc ๏ฝ 0
a๏ซ b b๏ซc c๏ซa
Show that either a + b +c = 0 or a = b = c.
ANSWERS
1. Order, Addition, Multiplication and transpose of matrices:
LEVEL I
1. 1 ๏ด 6, 6 ๏ด 1 , 2 ๏ด 3 , 3 ๏ด 2
3.skew symmetric
2.
4. a = 8, b = 8
3.
LEVEL II
4. 2 ๏ด 2, 3 ๏ด 3
20
LEVEL III.
1.
2.
+
(ii). Cofactors &Adjoint of a matrix
LEVEL I
1. 46
2.
(iii)Inverse of a Matrix & Applications
LEVEL I
-1 = -
1. A
-1 =
A
2. A
A
3. k = 17
LEVEL II
1.
3. 512
LEVEL III
2. (i) x = 3, ,y = -2, z = 1. (ii) x=7,y=4,z=10
1.x = 1, y = 2, z = 3.
, y = - 1, z =
4.x = ½, y = -1, z = 1.
6.
(iv). To Find The Difference Between
LEVEL I
1. 0
2. 27
1. 8
3.24
LEVEL II
2. 49
LEVEL III
1.a = 3
2. 125
(v). Properties of Determinants
LEVEL I
1. x = 4
2.
+
+ +
LEVEL II
๏ฎ
2. [Hint: Apply C1
C1โbC3 and C2 ๏ฎ C2+aC3]
4.
3. AB = 6I, x =
21
CONTINUITY AND DIFFERENTIABILITY
Concept :- Continuity
Suppose f is a real function on a subset of the real numbers and let c be a point in
the domain of f.
then f is continuous at c if lim f ๏จx ๏ฉ ๏ฝ f ๏จc ๏ฉ
x ๏ฎc
or
lim f ๏จc ๏ญ h ๏ฉ ๏ฝ f ๏จc ๏ฉ ๏ฝ lim f ๏จc ๏ซ h ๏ฉ
h ๏ฎ0
h ๏ฎ0
PRACTICE PROBLEMS
LEVEL โ I
๏ท
Examine whether the function f given by f ๏จx ๏ฉ ๏ฝ x 2 is continuous at x = 0
๏ท
Discuss the continuity of the function f given by f ๏จx ๏ฉ ๏ฝ x at x = 0
๏ท
Show that every polynomial function is continuous
LEVEL- II
Show that the function f defined by f ๏จx ๏ฉ ๏ฝ 1 ๏ญ x ๏ซ x , where x is any real number, is a
๏ท
๏ท
๏ท
continuous function .
Find the relationship between a and b so that the function f defined by
๏ฌax ๏ซ 1, if x ๏ฃ 3
f ๏จx ๏ฉ ๏ฝ ๏ญ
is continuous at x ๏ฝ 3 .
๏ฎbx ๏ซ 3 if x ๏พ 3
๏ฌ๏ฌ ( x 2 ๏ญ 2 x ), if
For what value of ๏ฌ is the function defined by f ๏จx ๏ฉ ๏ฝ ๏ญ
if
๏ฎ4 x ๏ซ 1
continuous at x ๏ฝ 0 ? What about continuity at x ๏ฝ 1 ?
LEVEL-III
x๏ฃ0
x๏พ0
22
๏ท
๏ท
๏ท
๏ฌ 1 ๏ญ sin 3 x
if
๏ฏ 3 cos 2 x
๏ฏ
๏ฏ
Let f ๏จ x ๏ฉ ๏ฝ ๏ญ
a
if
๏ฏ
๏ฏ b๏จ1 ๏ญ sin x ๏ฉ if
2
๏ฏ
๏ฎ ๏จ๏ฐ ๏ญ 2 x ๏ฉ
find a and b.
x๏ผ
x๏ฝ
x๏พ
๏ฐ
2
๏ฐ
If f ๏จx ๏ฉ be a continuous function at x ๏ฝ
2
๏ฐ
the
2๐ฅ+2 โ16
{
4๐ฅ โ16
value
of
k,
so
that
a
function
๐(๐ฅ) =
, ๐๐ ๐ฅ โ 2
๏ฆm๏ถ
log ๏ง ๏ท ๏ฝ log m ๏ญ log n
๏จn๏ธ
log m n ๏ฝ n log m
log a b ๏ฝ
log c b
log c a
log a a ๏ฝ 1
PRACTICE PROBLEMS
LEVEL โ I
๏ท
Find ๐๐ฅ
๏ท
Find ๐๐ฅ
๏ท
Find ๐๐ฅ
๏ท
๐๐ฆ
Find ๐๐ฅ
: ๐ฅ 3 + ๐ฅ 2 ๐ฆ + ๐ฅ๐ฆ 2 + ๐ฆ 3 = 81
๏ท
Find ๐๐ฅ
๐๐ฆ
: ๐ ๐๐2 ๐ฅ + ๐๐๐ 2 ๐ฆ = 1
๏ท
๏ท
Verify Rolleโs theorem for the function ๐ฆ = ๐ฅ 2 + 2, ๐ = โ2 ๐๐๐ ๐ = 2
If ๐: [โ5, 5] โ ๐
is differentiable function and if ๐โฒ(๐ฅ) does not vanish anywhere,
then prove that ๐(โ5) โ ๐(5)
LEVEL-II
๐๐ฆ
๐๐ฆ
:
2๐ฅ + 3๐ฆ = ๐ ๐๐๐ฆ
:
๐ฆ = ๐ ๐๐2 (3๐ฅ + 1)3
:
๐ฆ = tan(๐ฅ + ๐ฆ)
,
x ๏พ1
x ๏ฝ 1 is continuous at x = 1,find the value of a
x ๏ผ1
๐
, ๐๐ ๐ฅ = 2
is continuous at ๐ฅ = 2.
Concept :- Differentiation of Implicit function, logarithmic functions, functions
in parametric forms, second order derivatives, Rolleโs theorem and
lagrangeโs Mean value Theorem
log ๏จm ๏ด n ๏ฉ ๏ฝ log m ๏ซ log n
๐๐ฆ
2
2
๏ฌ 3ax ๏ซ b if
๏ฏ
If the function f ๏จx ๏ฉ ๏ฝ ๏ญ 11
if
๏ฏ5ax ๏ญ 2b if
๏ฎ
and b.
Find
๏ฐ
23
๏จx ๏ญ 3๏ฉ๏จx 2 ๏ซ 4๏ฉ
๏ท
Differentiate
๏ท
Find
๏ท
d2y
Find 2 , if y ๏ฝ x 3 ๏ซ tan x .
dx
๏ท
If x ๏ฝ a sin t , y ๏ฝ a cos
๏ท
x ๏ซ1
๏ถ
๏ฆ sin x ๏ถ
๏ญ1 ๏ฆ 2
Differentiate the following w.r.t x (i) tan ๏ญ1 ๏ง
๏ท
๏ท (ii) sin ๏ง๏ง
x ๏ท
๏จ 1 ๏ซ cos x ๏ธ
๏จ1 ๏ซ 4 ๏ธ
๏ท
If y ๏ฝ 3e 2 x ๏ซ 2e 3 x , prove that
๏ท
๏ง 1๏ซ ๏ท
1๏ถ
๏ฆ
Differentiate the function :- ๏ง x ๏ซ ๏ท ๏ซ x ๏จ x ๏ธ .
x๏ธ
๏จ
๏ท
Differentiate the function :- ๏จx cos x ๏ฉx ๏ซ ๏จx sin x ๏ฉ x .
๏ท
Differentiate the function :- x sin x ๏ซ ๏จsin x ๏ฉ
๏ท
Differentiate the function :- x x cos x ๏ซ
๏ท
Find
3x 2 ๏ซ 4 x ๏ซ 5
w.r.t x.
dy
of the function:- x y ๏ซ y x ๏ฝ 1 .
dx
๏ญ1
๏ญ1
t
, show that
d2y
dy
๏ญ 5 ๏ซ 6y ๏ฝ 0 .
2
dx
dx
x
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
dy
y
๏ฝ๏ญ .
dx
x
๏ฆ
1๏ถ
1
cos x
.
x2 ๏ซ1
.
x2 ๏ญ1
dy
of the function:- x y ๏ซ y x ๏ฝ 1 .
dx
dy
y
x
Find
of the function:- ๏จcos x ๏ฉ ๏ฝ ๏จcos y ๏ฉ .
dx
x ๏ฝ a๏จ๏ฑ ๏ญ sin ๏ฑ ๏ฉ, y ๏ฝ a๏จ1 ๏ซ cos๏ฑ ๏ฉ .
t๏ถ
๏ฆ
x ๏ฝ a๏ง cos t ๏ซ log tan ๏ท, y ๏ฝ a sin t .
2๏ธ
๏จ
Verify Mean Value Theorem if ๐(๐ฅ) = ๐ฅ 2 โ 4๐ฅ โ 3 in the interval [a, b], where a= 1
and b = 4.
LEVEL โIII
dy
Find
, if y x ๏ซ x y ๏ซ x x ๏ฝ a b .
dx
๏จ
๏ฉ
2
If y ๏ฝ tan ๏ญ1 x ,show that
๏จx
2
๏ซ 1๏ฉ y2 ๏ซ 2 x ๏จx 2 ๏ซ 1๏ฉy1 ๏ฝ 2
2
๏ฉ ๏ฆ dy ๏ถ
๏ช1 ๏ซ ๏ง ๏ท
๏ช ๏จ dx ๏ธ
2
2
If ๏จx ๏ญ a ๏ฉ ๏ซ ๏จ y ๏ญ b ๏ฉ ๏ฝ c 2 , for some ๐ > 0 prove that ๏ซ
d2y
dx 2
independent of a and b
If cos y ๏ฝ x cos๏จa ๏ซ y ๏ฉ with cos a ๏น ๏ฑ1 ,prove that
2
๏น
๏บ
๏บ๏ป
3
2
dy cos 2 ๏จa ๏ซ y ๏ฉ
๏ฝ
dx
sin a
is a constant
24
๏ท
If x 1 ๏ซ y ๏ซ y 1 ๏ซ x ๏ฝ 0 ,for, -1< x <1 , Prove that
๏ท
If x ๏ฝ cos(log y ), ๏ญ 1 ๏ฃ x ๏ฃ 1 , Show that 1 ๏ญ x 2
๏ท
If y ๏ฝ sin ๏ญ1 x , show that 1 ๏ญ x 2
๏ท
Find
๏ท
If x ๏ฝ
๏ท
Differentiate
๏ท
For a positive constant a find
๏ท
If x ๏ฝ a๏จcos t ๏ซ t sin t ๏ฉ and y ๏ฝ a๏จsin t ๏ญ t cos t ๏ฉ , find
๏ท
If y ๏ฝ 500e 7 x ๏ซ 600e ๏ญ7 x ,show that
๏จ
๏จ
dy
of the function:dx
sin 3 t
cos 2t
,y ๏ฝ
cos 3 t
cos 2t
๏ฉd
2
dx
y
2
๏ญx
๏ฉd
2
dx
dy
1
๏ฝ๏ญ
dx
๏จ1 ๏ซ x ๏ฉ2
y
2
๏ญx
dy
๏ฝ 0.
dx
yx ๏ฝ xy .
. Find
๏จx ๏ญ 3๏ฉ๏จx 2 ๏ซ 4๏ฉ
3x 2 ๏ซ 4 x ๏ซ 5
dy
dx
w.r.t x.
1
๏ท
dy
๏ญy๏ฝ0
dx
t๏ซ
dy
๏ฆ 1๏ถ
,where y ๏ฝ a t , x ๏ฝ ๏ง t ๏ซ ๏ท
dx
๏จ t๏ธ
a
d2y
dx 2
d2y
๏ฝ 49 y
dx 2
Examine the validity and conclusion of the Lagrangeโs mean value theorem for the
function ๐(๐ฅ) = โ๐ฅ 2 โ 4 in the interval [2, 4]
25
Applications of Derivatives
Concept :Increasing or Decreasing function:- Let I be an open interval contained in the
domain of a real valued function f . Then f is said to be
Increasing on I if x1 ๏ผ x2 in I ๏ f ๏จx1 ๏ฉ ๏ฃ f ๏จx2 ๏ฉ, ๏ขx1 , x2 ๏ I
(i)
Strictly increasing on I if x1 ๏ผ x2 in I ๏ f ๏จx1 ๏ฉ ๏ผ f ๏จx2 ๏ฉ, ๏ขx1 , x2 ๏ I
(ii)
(iii)
Decreasing on I if x1 ๏พ x2 in I ๏ f ๏จx1 ๏ฉ ๏ณ f ๏จx2 ๏ฉ, ๏ขx1 , x2 ๏ I
Strictly decreasing on I if x1 ๏พ x2 in I ๏ f ๏จx1 ๏ฉ ๏พ f ๏จx2 ๏ฉ, ๏ขx1 , x2 ๏ I
(iv)
Theorem ;- Let f be continuous on ๏a, b๏ and differentiable on the open interval ๏จa, b๏ฉ
then
(i)
(ii)
f is increasing in ๏a, b๏ if f ' ๏จx๏ฉ ๏พ 0 for each x ๏ ๏จa, b๏ฉ
f is decreasing in ๏a, b๏ if f ' ๏จx๏ฉ ๏ผ 0 for each x ๏ ๏จa, b๏ฉ
(iii)
f is a constant function in ๏a, b๏ if f ' ๏จx ๏ฉ ๏ฝ 0 for each x ๏ ๏จa, b๏ฉ
(i)
f is strictly increasing in ๏จa, b๏ฉ if f ' ๏จx๏ฉ ๏พ 0 for each x ๏ ๏จa, b๏ฉ
Theorem ;- Let f be continuous on ๏a, b๏ and differentiable on the open interval ๏จa, b๏ฉ
then
(ii)
(iii)
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
๏ท
f is decreasing in ๏จa, b๏ฉ if f ' ๏จx๏ฉ ๏ผ 0 for each x ๏ ๏จa, b๏ฉ
f is a constant function in ๏จa, b๏ฉ if f ' ๏จx ๏ฉ ๏ฝ 0 for each x ๏ ๏จa, b๏ฉ
PRACTICE PROBLEMS
LEVEL-I
Show that f(x)=2x+3 is strictly increasing.
Prove that f(x)=cosx is
(i)
Strictly decreasing in (0, ๏ฐ )
(ii)
Strictly increasing in ( ๏ฐ ,2 ๏ฐ )
(iii)
Neither increasing nor decreasing in (0,2 ๏ฐ ).
Find the least value of a such that the function given by f(x)=x2+ax+1 is strictly
increasing on (1,2)
LEVEL-II
Find the intervals in which the function f is given by ๐(๐ฅ) = 4 ๐ฅ 3 โ 6๐ฅ 2 โ 72๐ฅ + 30
is (a) strictly increasing (b) strictly decreasing.
๏ฉ ๏ฐ๏น
Find the interval in which the function given by f ๏จ x ๏ฉ ๏ฝ sin 3x, x ๏ ๏ช0, ๏บ is (a)
๏ซ 2๏ป
increasing (b)decreasing
Find the interval in which the function f given by f ๏จx ๏ฉ ๏ฝ sin x ๏ซ cos x,0 ๏ฃ x ๏ฃ 2๏ฐ is
strictly increasing or strictly decreasing.
Find the interval in which๐ฆ = ๐ฅ 2 ๐ โ๐ฅ is increasing.
26
๏ท
The length of rectangle is decreasing at the rate of 5cm/min and the width y is
increasing at the rate of 4cm/min .When x = 8cm and y = 6cm Find the rate of change
of (a)the perimeter and (b) the area of rectangle.
3
A balloon, which always remains spherical, has a variable diameter ๏จ2 x ๏ซ 1๏ฉ find the
2
rate of change of its volume with respect to x.
๏ท
A particle moves along the curve 6 y ๏ฝ x 3 ๏ซ 2 .Find the point on the curve at which the
y-coordinate is changing 8 times as fast as the x-coordinate.
๏ท
LEVEL โ III
4 sin x ๏ญ 2 x ๏ญ x cos x
is (i)
2 ๏ซ cos x
๏ท
Find the interval in which the function f given by f ๏จ x ๏ฉ ๏ฝ
๏ท
increasing (ii) decreasing
A water tank has the shape of an inverted right circular cone with its axis vertical and
vertex lower most. Its semi vertical angle is tan ๏ญ1 ๏จ0.5๏ฉ .Water is poured into it at a
constant rate of 5 cubic meters per hour. Find the rate at which the level of the water
is rising at the instant when the depth of water in the tank is 4 m.
1
๏ท Find the interval in which the function f given by f ๏จx ๏ฉ ๏ฝ x 3 ๏ซ 3 , x ๏น 0 is (i)
x
increasing (ii) decreasing
Concept :Tangents and Normal , Approximation
Tangents and Normal:- The slope of the tangent to the curve y ๏ฝ f ๏จx ๏ฉ at the
point ๏จx0 , y 0 ๏ฉ is given by
dy ๏น
dx ๏บ๏ป ๏จ x0 , y0 ๏ฉ
The slope of the normal to the curve y ๏ฝ f ๏จx ๏ฉ at the point ๏จx0 , y 0 ๏ฉ is given by
โ1
dy ๏น
dx ๏บ๏ป ๏จ x0 , y0 ๏ฉ
The equation of a tangent at ๏จx0 , y 0 ๏ฉ to the curve y ๏ฝ f ๏จx ๏ฉ is given by
y ๏ญ y0 ๏ฝ f ' ๏จx0 ๏ฉ๏จx ๏ญ x0 ๏ฉ
The equation of a normal at ๏จx0 , y 0 ๏ฉ to the curve y ๏ฝ f ๏จx ๏ฉ is given by
y ๏ญ y0 ๏ฝ
๏ญ1
๏จ x ๏ญ x0 ๏ฉ
f ' ๏จ x0 ๏ฉ
Tangent line parallel to x-axis then equation of the tangent y ๏ฝ y0
Tangent line parallel to y-axis then equation of the tangent x ๏ฝ x0
Approximations:
(i)
The differential of x, denoted by dx , is defined by dx ๏ฝ ๏x .
27
The differential of y, denoted by dy , is defined by dy ๏ฝ f ' ๏จx0 ๏ฉ dx
(ii)
or
๏ฆ dy ๏ถ
dy ๏ฝ ๏ง ๏ท๏x .
๏จ dx ๏ธ
PRACTICE PROBLEMS
LEVEL -I
๏ท Find the slope of the tangent to the curve y ๏ฝ 3x 2 ๏ญ 4 x at x = 4
๏ท Find the slope of the tangent to the curve ๐ฆ = ๐ฅ 2 โ 3๐ฅ + 2 at the point whose xcoordinate is 3
๏ฐ
๏ท Find the slope of the normal to the curve x ๏ฝ a cos 3 ๏ฑ , y ๏ฝ a sin 3 ๏ฑ , at , ๏ฑ ๏ฝ
4
LEVEL โII
2
๏ท
Find the point at which the tangent to the curve ๐ฆ = โ4๐ฅ โ 3 โ 1 has its slope 3.
๏ท
Find the equation of the tangent line to the curve y ๏ฝ x 2 ๏ญ 2 x ๏ซ 7 which is (i)
parallel to the line 2 x ๏ญ y ๏ซ 9 ๏ฝ 0 (ii) Perpendicular to the line 5 y ๏ญ 15x ๏ฝ 13
๏ท Find the point on the curve x 2 ๏ซ y 2 ๏ญ 2 x ๏ญ 3 ๏ฝ 0 at which the tangents are the
parallel to the x-axis.
LEVEL-III
Find the equation of the normal to the curve y ๏ฝ x ๏ซ 2 x ๏ซ 6 which are parallel to the
๏ท
3
line x + 14y + 4 = 0.
๏ท
3
Prove that the curves x ๏ฝ y and xy ๏ฝ k cut at right angle if 8k ๏ฝ 1
๏ท
Find the equation of the tangent to the curve y ๏ฝ
2
3 x ๏ญ 2 which is parallel to the line
4x ๏ญ 2 y ๏ซ 5 ๏ฝ 0
INTEGRATION
INTRODUCTION
IF f(x) is derivative of function g(x), then g(x) is known as antiderivative or integral of
f(x)
i.e.,
๐
๐
๐
โ
(g(x)) = f(x)
โซ ๐(๐)๐
๐ = ๐(๐)
STANDARD SET OF FORMULAS
* Where c is an arbitrary constant.
1.
โซ ๐๐ ๐
๐
2.
โซ ๐
๐
๐
=
๐๐+๐
๐+๐
=
+๐
(n ๏น -1)
x+ c
3.
โซ ๐ dx
= log |x|
4.
โซ ๐๐๐ ๐ ๐
๐
= ๐๐๐ ๐ + ๐
+c
28
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
= โ ๐๐๐ ๐ + ๐
โซ ๐๐๐ ๐ ๐
๐
= ๐๐๐ ๐ + ๐
โซ ๐๐๐๐ ๐ ๐
๐
๐
โซ ๐๐๐๐๐ ๐ ๐
๐ = โ๐๐๐ ๐ + ๐
โซ ๐๐๐ ๐ ๐๐๐ ๐ ๐
๐ = ๐๐๐ ๐ + ๐
โซ ๐๐๐๐๐ ๐ ๐๐๐ ๐ ๐
๐ = โ๐๐๐๐๐ ๐ + ๐
= ๐๐ + ๐
โซ ๐๐ ๐
๐
= ๐๐๐ |๐๐๐ ๐ | + ๐
โซ ๐๐๐ ๐ ๐
๐
= ๐๐๐ |๐๐๐ ๐ | + ๐
โซ ๐๐๐ ๐ ๐
๐
= ๐๐๐ |๐๐๐ ๐ + ๐๐๐ ๐ | + ๐
โซ ๐๐๐ ๐ ๐
๐
= ๐๐๐ |๐๐๐๐๐ ๐ โ ๐๐๐ ๐ | + ๐
โซ ๐๐๐๐๐ ๐ ๐
๐
๐
15.
โซโ
16.
โซ ๐+๐๐ ๐
๐
17.
โซ
๐โ ๐๐
๐
๐
๐โ ๐๐ โ ๐
= sin -1 x + c
dx
= ๐๐๐โ๐ ๐ + ๐
= ๐ฌ๐๐ โ๐ ๐ + ๐
๐
๐
18.
โซ ๐๐ ๐
๐
19.
โซ โ๐ ๐
๐
๐๐
=
๐
๐๐๐ ๐
+ ๐
= ๐โ ๐ + ๐
INTEGRALS OF LINEAR FUNCTIONS
1.
โซ(๐๐ + ๐)๐ ๐
๐
2.
โซ ๐๐+๐ ๐
๐
3.
โซ ๐๐๐ (๐๐ + ๐ )๐
๐
=
๐
(๐๐+๐)๐+๐
=
+ ๐
(๐+๐)๐
๐๐๐ (๐๐+๐)
+ ๐
๐
โ๐๐๐ (๐๐+๐)
=
๐
+ ๐
In the same way if ax +b comes in the place of x, in the standard set of formulas, then
divide the integral by a
SPECIAL INTEGRALS
1.
๐
โซ ๐๐ โ๐๐ ๐
๐
๐
2.
โซ ๐๐ โ๐๐ ๐
๐
3.
๏ฒx
4.
โซโ
5.
โซโ
6.
โซโ
7.
โซ โ๐๐ + ๐๐ ๐
๐
2
๐
=
=
๐โ๐
๐๐
๐
๐๐
๐๐๐ |๐+๐| + c
๐+๐
๐๐๐ |๐โ๐| + ๐
1
1
x
dx ๏ฝ tan ๏ญ1 ๏ซ c
2
a
a
๏ซa
๐
๐๐ โ๐๐
๐
๐๐ +๐๐
๐
๐
๐
= ๐๐๐| ๐ + โ๐๐ โ ๐๐ | + ๐
๐
๐
= ๐๐๐ |๐ + โ๐๐ + ๐๐ | + c
๐๐ โ๐๐
๐
= ๐ฌ๐ข๐งโ๐ (๐) + ๐
๐
๐
๐
๐๐
๐
๐
๐๐
= ๐ โ๐๐ + ๐๐ +
๐๐๐ | ๐ + โ๐๐ + ๐๐ | + ๐
8.
โซ โ๐๐ โ ๐๐ dx
= ๐ โ๐๐ โ ๐๐ โ
9.
โซ โ๐๐ โ ๐๐ dx
= ๐ โ๐๐ โ ๐๐ + ๐ ๐ฌ๐ข๐งโ๐ (๐) + ๐
๐
๐
๐๐
๐๐๐ | ๐ + โ๐๐ โ ๐๐ | + ๐
INTEGRATION BY PARTS
1.
โซ ๐. ๐ ๐
๐
๐
๐
= ๐. โซ ๐ ๐
๐ โ โซ( ๐
๐ โซ ๐ ๐
๐) ๐
๐
๐
29
OR
The integral of product of two functions = (first function) x integral of the second
function โ integral of [(differential coefficient of the first function ) × (integral of the
second function)]
We can choose first and second function according to I L A T E where I โ inverse
trigonometric function โ ๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐, ๐ โ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐ โ
๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐ โ ๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐
2.
๏ฒ e ๏ f ( x) ๏ซ f
x
1
๏
( x) dx ๏ฝ e x f ( x) ๏ซ c .
Working Rule for different types of integrals
1. Integration of trigonometric function
Working Rule
(a) Express the given integrand as the algebraic sum of the functions of the following
forms
(i) Sin k๐ถ , (ii) cos k๐ถ ,(iii) tan k๐ถ , (iv) cot k๐ถ , (v) sec k๐ถ ,(vi) cosec k๐ถ ,(vii) sec2
k๐ถ ,
(viii) cosec2 k๐ถ , (ix) sec k๐ถ tan k๐ถ (x) cosec k๐ถ cot k๐ถ
For this use the following formulae whichever applicable
(i) ๐๐๐๐ ๐ =
(iii) ๐๐๐๐ ๐ =
๐โ๐๐๐ ๐๐
(ii) ๐๐๐๐ ๐ =
๐
๐ ๐๐๐ ๐โ๐๐๐ ๐๐
(iv)๐๐๐๐ ๐ =
๐
(v)
x
=
xโ1
(vi)
(Vii) 2sin x sin y = cos (x โ y ) โ cos ( x + y)
(vii) 2 cos x cos y = cos (x + y) + cos (x โ y )
(ix) 2 sin x cos y = sin (x + y ) + sin (x โ y )
(x) 2cos x sin y = sin (x + y ) โ sin ( x โ y )
tan2
sec2
cot2
๐+๐๐๐ ๐๐
๐
๐ ๐๐๐ ๐+๐๐๐ ๐๐
๐
= cosec2x โ 1
x
2. Integration by substitution
(a) Consider I= ๏ฒ f ( x)dx
Put x=g(t) so that
dx
๏ฝ g 1 (t ).
dt
We write dx=g1(t). Thus I= ๏ฒ f ( x)dx ๏ฝ ๏ฒ f ( g (t )) g 1 (t )dt
(b) When the integrand is the product of two functions and one of them is a function g
(x) and the other is k gโ (x), where k is a constant then
Put g (x) = t
3.
4.
๐
๐
Integration of the types โซ ๐๐๐ +๐๐+๐ ,โซ
๐
๐
, and โซ(๐๐๐ + ๐๐ + ๐)๐
๐
โ๐๐๐ +๐๐+๐
In this three forms change ๐๐๐ + ๐๐ + ๐ in the form A2 + X2 , X2 โ A2, or A2 โ X2
Where X is of the form x +k and A is a constant ( by completing square method)
Then integral can be find by using any of the special integral formulae
๐๐+๐
๐๐+๐
Integration of the types โซ ๐
๐
๐ ,โซ
๐
๐ and
โซ(๐๐ +
๐
๐)โ๐๐๐ + ๐๐ + ๐ dx
๐๐ +๐๐+๐
โ๐๐ +๐๐+๐
30
๐
In this three forms split the linear px +q = ๐
๐
๐
(๐๐๐ + ๐๐ + ๐ ) + ๐
Then divide the integral into two integrals
The first integral can be find out by method of substitution and the second integral
by completing square method as explained in 3
I,e., to evaluate โซ
๐๐+๐
โ๐๐๐ +๐๐+๐
๐
๐ = โซ
๐ (๐๐๐+๐ )+ ๐
dx
๐๐๐ + ๐๐+๐
๐๐๐+๐
๐
๐
= ๐ โซ ๐๐๐ + ๐๐+๐ ๐
๐ + ๐ โซ ๐๐๐ + ๐๐+๐
โ โ
Find by substitution method + by completing square
method
5.
Integration of rational functions
In the case of rational function, if the degree of the numerator is equal or greater
than degree of the denominator , then first divide the numerator by denominator and
write it as
๐ต๐๐๐๐๐๐๐๐
๐ซ๐๐๐๐๐๐๐๐๐๐
= ๐ธ๐๐๐๐๐๐๐ +
๐น๐๐๐๐๐๐
๐๐
๐ซ๐๐๐๐๐๐๐๐๐๐๐
, then integrate
6.
Integration by partial fractions
Integration by partial fraction is applicable for rational functions. There first we must
check thatdegree of the numerator is less than degree of the denominator, if not, divide
๐ต๐๐๐๐๐๐๐๐
the numerator by denominator and write as ๐ซ๐๐๐๐๐๐๐๐๐๐ = ๐ธ๐๐๐๐๐๐๐ +
๐น๐๐๐๐๐๐
๐๐
๐ซ๐๐๐๐๐๐๐๐๐๐๐
๐น๐๐๐๐๐๐
๐๐
and proceed for partial fraction of ๐ซ๐๐๐๐๐๐๐๐๐๐๐
Sl.
No.
Form of the rational functions
Form of the rational functions
1
๐๐ + ๐
(๐ โ ๐)(๐ โ ๐ )
๐จ
๐ฉ
+
๐โ๐ ๐โ๐
2
๐๐ + ๐
(๐ โ ๐)๐
๐จ
๐ฉ
+
๐ โ ๐ (๐ โ ๐)๐
31
3.
๐๐๐ + ๐๐ + ๐
(๐ โ ๐ )(๐ โ ๐ )๐ โ ๐ )
๐จ
๐ฉ
๐ช
+
+
๐โ๐ ๐โ๐ ๐โ๐
4
๐๐๐ + ๐๐ + ๐
(๐ โ ๐ )๐ (๐ โ ๐ )
๐จ
๐ฉ
๐ช
+
+
๐
๐ โ ๐ (๐ โ ๐ )
๐โ๐
๐จ
๐ฉ๐ + ๐ช
+ ๐
๐ โ ๐ ๐ + ๐๐ + ๐
๐๐๐ + ๐๐ + ๐
(๐ โ ๐ )(๐๐ + ๐๐ + ๐ )
Where x2 + bx + c cannot be
factorized further
5
DEFINITE INTEGRATION
Working Rule for different types of definite integrals
1. Problems in which integral can be found by direct use of standard formula or by
transformation method
Working Rule
(i). Find the indefinite integral without constant c
(ii). Then put the upper limit b in the place of x and lower limit a in the place of x and
subtract the second value from the first. This will be the required definite integral.
2. Problems in which definite integral can be found by substitution method
Working Rule
When definite integral is to be found by substitution then change the lower and upper
limits of integration. If substitution is z = ฯ(x) and lower limit integration is a and
upper limit is b Then new lower and upper limits will be ฯ(a) and ฯ(b) respectively.
Properties of Definite integrals
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
1.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐)๐
๐
๐.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐)๐
๐. In particular, โซ๐ ๐(๐)๐
๐ = 0
3.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐)๐
๐ + โซ๐ ๐(๐)๐
๐, a < c < b
4.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐ + ๐ โ ๐)๐
๐
5.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐ โ ๐)๐
๐
6.
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐)๐
๐ + โซ๐ ๐(๐๐ โ ๐)๐
๐
7.
โซ๐ ๐(๐)๐
๐ = ๐ โซ๐ ๐(๐)๐
๐ , if ๐(๐๐ โ ๐) = ๐(๐) and
๐๐
๐๐
๐
๐
๐
๐
๐
=0 ,
8.
(i)
(ii)
๐
โซโ๐ ๐(๐)๐
๐
๐
โซโ๐ ๐(๐)๐
๐
if ๐(๐๐ โ ๐) = โ๐(๐)
if ๐ is an even function, i.e., if ๐(-x) = ๐(๐)
๐
= ๐ โซ๐ ๐(๐)๐
๐,
= ๐, if ๐ is an odd function, i.e., if ๐(โx) = โ๐(๐)
32
Problem based on property
๐
๐
๐
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐)๐
๐ + โซ๐ ๐(๐)๐
๐, a < c < b
Working Rule
This property should be used if the integrand is different in different parts of the
interval [a,b] in which function is to be integrand. This property should also be used
when the integrand (function which is to be integrated) is under modulus sign or is
discontinuous at some points in interval [a,b]. In case integrand contains modulus then
equate the functions whose modulus occur to zero and from this find those values of x
which lie between lower and upper limits of definite integration and then use the
property.
Problem based on property
๐
๐
โซ๐ ๐(๐)๐
๐ = โซ๐ ๐(๐ โ ๐)๐
๐
Working Rule
Let
๐
I = โซ๐ ๐(๐)๐
๐
๐
I = โซ๐ ๐(๐ โ ๐)๐
๐
Then
๐
๐
2I = โซ๐ ๐(๐)๐
๐ + โซ๐ ๐(๐ โ ๐)๐
๐
(1) + (2) =>
๐
๐
I = ๐ โซ๐ {๐(๐) + ๐(๐ โ ๐)}๐
๐
This property should be used when ๐(๐) + ๐(๐ โ ๐) becomes an integral function of x.
Problem based on property
๐
๐
๐
โซโ๐ ๐(๐)๐
๐ = 0, if ๐(๐) is an odd function and โซโ๐ ๐(๐)๐
๐ = 2โซ๐ ๐(๐)๐
๐, if ๐(๐) is an
even function.
Working Rule
This property should be used only when limits are equal and opposite and the
function which is to be integrated is either odd/ even.
PROBLEM BAESD ON LIMIT OF SUM
Working rule
๐
โซ๐ ๐ (๐)๐
๐ = ๐ฅ๐ข๐ฆ ๐ { ๐ (๐) + ๐ (๐ + ๐ ) + โฆ . +๐ ( ๐ + (๐ โ ๐ )๐ )}
๐โ๐
Where nh = b โ a
The following results are used for evaluating questions based on limit of sum.
n ๏ญ1
n(n ๏ญ 1)
(i)
1 + 2 + 3 + โฆ.. + (n-1) = ๏ฅ k ๏ฝ
2
k ๏ฝ1
(ii)
๐๐ + ๐๐ + ๐๐ + โฆ. + (๐ โ ๐)๐ = โ
(iii)
๐๐ + ๐๐ + ๐๐ + โฆ.. + (๐ โ ๐)๐ = [
(iv)
a + ar + โฆโฆ + ๐๐๐โ๐ =
๐[๐๐ โ ๐]
๐โ๐
(๐โ๐)๐(๐๐โ๐)
๐
(๐โ๐)๐ ๐
๐
]
(rโ 1)
IMPORTANT SOLVED PROBLEMS
Evaluate the following integrals
33
1.
โซ
( ๐+๐๐๐ ๐ฟ )๐
๐
๐
๐ฟ
Solution
๐
put 1+log x = t
( ๐+๐๐๐ ๐ฟ )๐
โซ
๐ฟ
๐๐
๐๐
+ ๐
๐
(๐+๐๐๐๐ )๐
=
โซโ
๐
๐ = ๐
๐
โซ ๐๐ ๐
๐
๐
๐ =
=
2.
๐
+๐
๐
๐
๐
๐โ๐๐๐ โ๐๐๐
Solution
Put ๐๐ = ๐ ๐๐๐๐ ๐๐ ๐
๐ = ๐
๐
๐๐
๐
๐
โซ
๐
๐ = โซ
โ๐ โ ๐๐๐ โ ๐๐๐
โ๐ โ ๐๐ โ ๐๐
๐
๐
=โซ
โโ ๐
=โซ
(๐ + ๐๐โ๐ )
๐
๐
โโ ( ๐๐ + ๐๐+๐โ๐โ๐ )
๐
๐
=โซ
=โซ
โโ { ( ๐+๐ )๐ โ๐ }
๐
๐
โ๐๐ โ( ๐+๐ )๐
= ๐ฌ๐ข๐งโ๐
3.
๐๐ +๐
๐+๐
+ C = ๐ฌ๐ข๐งโ๐ (
๐
)+ ๐ช
๐
โซ โ๐๐๐๐ dx
Solution
Put tan x = t 2then
๐๐ ๐
๐
sec2x dx = 2t dt => dx =
๐๐ ๐
๐
โซ โ๐๐๐๐ dx = โซ ๐
๐+ ๐๐
๐๐๐
= โซ ๐+ ๐๐ ๐
๐
๐+ ๐๐
๐
๐
๐ (by dividing nr and dr by t2 )
= โซ๐
๐
๐+ ๐
๐
๐
= โซ
๐
(๐+ ๐ ) + (๐โ ๐ )
๐
๐
๐
๐๐ + ๐
๐
๐
๐
๐
= โซ
๐
๐+ ๐
๐
๐
๐
๐
๐๐ + ๐
๐
+โซ
๐
= โซ
๐
๐ + โซ
(๐โ ) + ๐
๐
๐
๐
๐๐ + ๐
๐
๐
๐
๐
๐+ ๐
๐
๐ ๐
๐
๐โ ๐
๐
๐โ ๐
๐
๐ ๐
๐
๐
๐
(๐+ ) โ ๐
๐
๐
๐
= โซ ๐๐ + ๐ + โซ ๐๐ โ ๐ ( 1st integral put ๐ โ ๐ = u
then (๐ +
๐
๐๐
๐
) ๐
๐ = ๐
๐
2nd integral put๐ + ๐ = ๐ ๐๐๐๐ ( ๐ โ
๐
=
โ๐
๐
๐
๐โ โ๐
๐ญ๐๐งโ๐ ( ) + ๐โ๐ ๐๐๐ | ๐+โ๐ | + ๐ช
โ๐
๐
๐๐
) ๐
๐ = ๐
๐
34
๐
=
=
=
โซโ
4.
๐ญ๐๐ง
โ๐
๐
โ๐
โ๐
๐โ
(
๐
๐
โ๐
๐
) + ๐โ๐ ๐๐๐ |
๐๐ โ ๐
๐ญ๐๐งโ๐ (
๐
๐
๐
๐+ +โ๐
๐
๐+ โ โ๐
| +๐ช
๐๐ + ๐โ โ๐ ๐
๐
) + ๐โ๐ ๐๐๐ |๐๐ + ๐+
๐
โ๐
๐
๐๐๐๐โ
๐
๐ญ๐๐งโ๐ ( ๐๐๐๐)
โ๐
โ๐
๐๐+๐
| +๐ช
โ๐ ๐
๐๐๐๐+ ๐โ โ๐๐๐๐๐
๐
+ ๐โ๐ ๐๐๐ |๐๐๐๐+ ๐โ
| +๐ช
โ๐๐๐๐๐
๐
๐
๐๐ + ๐๐+ ๐๐
Solution
๐
= > A = ๐ ๐๐๐
๐ฉ = โ๐
5x + 3 = A (2x + 4 ) + B
๐
๐๐ + ๐
โซ
โ๐๐ + ๐๐ + ๐๐
โซ
=
๐
=
๐
=
=
๐
๐ = โซ
๐
(๐๐+๐)
๐
๐
โ๐ + ๐๐+๐๐
โซโ
๐
(๐๐ + ๐) โ ๐
โ๐๐ + ๐๐ + ๐๐
๐
๐ + โซ
โ
(๐๐+๐)
๐๐ + ๐๐+๐๐
๐
๐
๐
๐
๐
๐
๐
๐๐ + ๐๐+๐๐
๐
๐ + ๐ โซ
โ
โซ โ๐ + ๐ โซ โ
๐
๐
๐
๐+๐ )๐ +๐
๐
๐
๐๐ + ๐๐+๐๐
๐๐ + ๐๐+๐โ๐+๐๐
× ๐โ ๐ + ๐ โซ
โ(
๐
๐
๐
๐
๐
๐
dx
= 5 โ๐๐ + ๐๐ + ๐๐ + ๐ ๐๐๐ | ๐ + ๐ + โ๐๐ + ๐๐ + ๐๐| + ๐ช
๐
โซ๐
5.
๐ ๐๐๐ ๐
๐๐๐ ๐+๐๐๐ ๐
๐
๐
Solution
๐
I = โซ๐
๐
Again I = โซ๐
I=
๐ ๐๐๐ ๐
๐
๐ -------------------(1)
๐๐๐ ๐+๐๐๐ ๐
(๐
โ๐) ๐๐๐(๐
โ๐)
๐๐๐ (๐
โ๐)+๐๐๐ (๐
โ๐)
๐
(๐
โ๐) ๐๐๐ ๐
โซ๐ ๐๐๐ ๐+๐๐๐ ๐ ๐
๐
๐
๐
๐
๐ Using the property โซ๐ ๐ (๐)๐
๐ = โซ๐ ๐(๐ โ ๐ )๐
๐
-------------------- (2)
Adding (1) and (2) we get
๐
(๐
โ๐) ๐๐๐ ๐
๐ ๐๐๐ ๐
๐
๐ + โซ๐ ๐๐๐ ๐+๐๐๐ ๐ ๐
๐
๐๐๐ ๐+๐๐๐ ๐
๐
๐
๐๐๐๐ (๐๐๐ ๐โ๐๐๐ ๐ )
๐๐๐๐
๐
โซ๐ ๐๐๐ ๐+๐๐๐ ๐ ๐
๐ = ๐
โซ๐ ๐๐๐๐ ๐โ ๐๐๐๐ ๐ ๐
๐
๐
๐
๐
โซ๐ (๐๐๐ ๐ ๐๐๐ ๐ โ ๐๐๐๐ ๐) dx = ๐
โซ๐ (๐๐๐ ๐
๐
2 I = โซ๐
=
=
๐๐๐ ๐ โ ๐๐๐๐ ๐ + ๐)๐
๐
๐
๐
= ๐
โ๐๐๐ ๐ โ ๐๐๐ ๐ + ๐โ
I
6.
๐
= ๐
( ๐ โ ๐)
๐
Evaluate โซ๐ (๐๐ โ ๐) ๐
๐ using limit of sum
Solution
๐
Comparing the given integral with โซ๐ ๐ (๐)๐
๐
a = 1, b = 4 f (x ) = x2 โ x
โด ๐๐ = ๐ โ ๐ = ๐ and
f ( a+ (n-1)h )= f ( 1 + (n โ 1 ) h )
= ( 1 + (n โ 1 ) h ) 2 - [1 + (n โ 1 ) h]
= 1 + 2 (n-1 )h + (n โ 1 ) 2 h2 -1 โ (n โ 1 ) h
35
= (n โ 1 ) h + (n โ 1 ) 2 h2
๐
= ๐ฅ๐ข๐ฆ ๐ โ๐โ๐
๐ ( ๐ + (๐ โ ๐ )๐ )
๐
โซ๐ ๐ (๐)๐
๐
๐ โ๐
๐
๐ ๐
โซ๐ (๐๐ โ ๐) ๐
๐ = ๐ฅ๐ข๐ฆ๐{ โ๐โ๐
๐ (๐ โ ๐ ) ๐ + (๐ โ ๐) ๐ }
๐โ๐
= ๐ฅ๐ข๐ฆ๐{โ(๐ โ ๐ )๐ + โ(๐ โ ๐)๐ ๐๐ }
๐โ๐
= ๐ฅ๐ข๐ฆ๐{ ๐ โ(๐ โ ๐ ) + ๐๐ โ(๐ โ ๐)๐ }
๐โ๐
= ๐ฅ๐ข๐ฆ ๐๐
๐ ( ๐โ๐ )
๐
๐โ๐
๐๐ ( ๐๐โ๐ )
= ๐ฅ๐ข๐ฆ
+
๐ โ๐
= ๐ฅ๐ข๐ฆ
๐
๐โ๐
๐๐
=๐ +
=
๐
๐ ( ๐โ๐ )
๐
+
+ ๐๐
๐ ( ๐โ๐ )( ๐๐โ๐ )
๐
๐๐ ( ๐๐โ๐ )(๐๐๐โ๐ )
๐
๐ ( ๐โ๐ )( ๐โ๐ )
๐
๐
๐๐
๐
PRACTICE PROBLEMS
LEVEL I
Evaluate the following integrals
1.
โซ(๐๐ โ ๐ ๐๐๐๐ + ๐๐ ) ๐
๐
2.
3.
4.
5.
โซ
๐๐ +๐๐๐ + ๐
โ๐
๐
๐
๐
โซ ๐๐๐ ๐ ๐
๐
โซ ๐๐๐ ๐๐ ๐๐๐ ๐๐ ๐
๐
โซ ๐๐๐๐ ๐๐๐๐๐ ๐ ๐
๐
๐
๐
6.
โซ ๐๐ + ๐๐+๐
7.
โซโ
8.
โซ๐๐ ๐๐๐๐ ๐ ๐
๐
9.
โซ ๐๐ ๐๐ ๐
๐
10.
โซ๐
๐
๐
๐๐ + ๐๐+๐
๐
๐
๐
๐๐ + ๐
๐
๐
36
LEVEL II
Evaluate the following integrals
๐๐๐ ๐
1.
โซ ๐๐๐ (๐โ๐ ) ๐
๐
2.
โซ ( ๐โ๐ )( ๐+ ๐๐ ) ๐
๐
3.
โซ โ( ๐โ๐ )(๐โ๐ ) ๐
๐
4.
โซ ๐๐ (๐โ๐๐๐ ๐๐) ๐
๐
5.
โซ ๐๐ ๐ญ๐๐งโ๐ ๐ ๐
๐
6.
โซ ๐๐๐๐ ๐+๐๐๐ ๐๐
7.
โซ ( ๐+ ๐๐ )( ๐+ ๐๐ ) ๐
๐
9.
โซ ๐ญ๐๐งโ๐ โ๐+๐ ๐
๐
10.
11.
12.
13.
๐
๐+๐
๐๐๐ ๐๐โ๐
๐
๐
๐๐
๐โ๐
๐
โซ๐
๐๐๐๐ ๐
๐
๐
๐๐๐ ๐ ๐๐๐๐๐ ๐
๐
๐
โซ๐ ๐+๐๐๐๐ ๐
๐
๐
โซโ๐ | ๐๐ โ ๐ | ๐
๐
๐
โ๐
โซ๐ โ๐+ โ๐โ๐ ๐
๐
๐
14.
โซ๐๐ ๐๐๐ ( ๐ + ๐๐๐ ๐ )๐
๐
15.
โซ๐ (๐๐ + ๐) ๐
๐ as a limit of sum
๐
๏ฐ
๏ฆ 5Sinx ๏ซ 3Cosx ๏ถ
๏ทdx
Sinx ๏ซ Cosx ๏ธ
0
2
16.
๏ฒ ๏ง๏จ
LEVEL III
Evaluate the following integrals
๐๐๐ ๐
1.
โซ ๐๐๐๐๐ ๐
๐
2.
โซ(โ๐๐๐ ๐ + โ๐๐๐ ๐ ) ๐
๐
3.
โซ ๐๐๐๐ ๐+ ๐๐๐๐ ๐ ๐
๐
4.
โซ โ ๐+โ๐ ๐
๐
5.
6.
โซ ๐๐๐ (๐๐๐ ๐ )๐
๐
โซ ๐๐๐ ( ๐ + โ๐๐ + ๐๐ ) ๐
๐
7
โซ๐ ๐ ๐๐๐ (๐๐๐ ๐ )๐
๐
8.
โซ๐ (๐๐๐ + ๐ + ๐ ) ๐
๐ as a limit of sum
๐๐๐ ๐ ๐๐๐ ๐
๐โ โ๐
๐
๐
36
37
xdx
9.
๏ฒ 1 ๏ซ x tan x
10
x4
๏ฒ ( x ๏ญ 1)( x 2 ๏ซ 1) dx
๏ฉ
1 ๏น
11. ๏ฒ ๏ชlog ๏จlog x ๏ฉ ๏ซ
๏บdx
๏จlog x ๏ฉ2 ๏ป
๏ซ
37
38
APPLICATION OF INTEGRATION
INTRODUCTION
Area under Simple Curves
(i)
Area bounded by the curve y = f(x), the x-axis and between the ordinates at x = a and x = b
is given by
๐
๐
Area = โซ๐ ๐ ๐
๐ = โซ๐ ๐(๐) ๐
๐
(ii)
Area bounded by the curve y = f(x), the y axis and between abscissas at y = c and y =
d is given by
๐
๐
Area = โซ๐ ๐ ๐
๐ = โซ๐ ๐(๐)๐
๐
Where
y = ๐(๐) => ๐ฅ = ๐(๐ฆ)
Note: If area lies below x-axis or to left side of y-axis, then it is negative and in such a
case we like its absolute value. (numerical value)
38
39
4.
Area bounded by two curves ๐ = ๐(๐) and ๐ = ๐(๐), such that ๐ โค ๐(๐) โค ๐(๐)
for all ๐ โ [๐, ๐] and between the ordinates at ๐ = ๐, ๐ = ๐ is given by
๐
Area = โซ๐ {๐(๐) โ ๐(๐)} ๐
๐
Finding the area enclosed between a curve, X- axis and two ordinates or a curve , Y- axis
and two abscissa
WORKING RULE
1. Draw the rough sketch of the given curve
2. Find whether the required area is included between two ordinate or two abscissa
3. (a) If the required area is included between two ordinates x = a and x= b then use
๐
the formula โซ๐ ๐ ๐
๐
(b) If the required area is included between two abscissa y = c and = d then use the
๐
Formula โซ๐ ๐ ๐
๐
Finding the area included between two curves
WORKING RULE
1. Draw the graph of the given curves.
2. Mark the region whose area is to be determined.
3. Find whether the area is bounded between two given curves and two ordinates or
between the two given curves and two abscissa.
(a) If the required area is bounded between 2 ordinates , use the formula
๐
โซ๐ [๐ (๐) โ ๐ (๐)]๐
๐
(b) If the required area is included between two abscissa use the formula
๐
โซ๐ [๐(๐) โ ๐(๐)] ๐
๐
SOME IMPORTANT POINTS TO BE KEPT IN MIND FOR SKETCHING THE GRAPH
1.
๐๐ = 4ax is a parabola with vertex at origin,
symmetric to X axis and right of origin
39
40
2.
๐๐ = - 4ax is a parabola with vertex at origin,
symmetric to X axis and left of origin
3.
๐๐ = 4ay is a parabola with vertex at origin,
symmetric to y axis and above origin
4.
๐๐ = - 4ay is a parabola with vertex at origin,
symmetric to y axis and below origin
5.
๐๐
๐๐
+ ๐๐ = 1 is an ellipse symmetric to both axis,
๐๐
7.
8.
Cut x axis at (±a,0) and y axis at (0,±๐)
๐๐ + ๐๐ = ๐๐ is a circle symmetric to both the axes
with centre at origin and radius r
(๐ โ ๐)๐ + (๐ โ ๐)๐ = ๐๐ is a circle with centre at (h,k) and radius r.
ax +by + c = 0 representing a straight line
9.
10.
Graph of ๐ = |๐|
Graph of ๐ = |๐ โ ๐|
6.
40
41
IMPORTANT SOLVED PROBLEMS
1. Calculate the area of the region bounded by the parabola y =x2 and x = y2
Solution
Parabola y 2 = x is symmetrical to X- axis and x2 = y is symmetrical to y axis
Solving both the equations we get the point of intersection of the two curves as (0,0) and
(1,1)
๐
Required area = โซ๐ (โ๐ โ ๐๐ ) ๐
๐
๐
= [
๐๐
๐
๐
๐
โ
=๐ โ
๐
๐
๐๐
๐
]
๐
๐
๐
= ๐ sq. units
2. Find the area of the region ; { (x, y ) : ๐๐ โค ๐๐ , ๐๐๐ + ๐๐๐ โค ๐}
Solution:
Curves y2 =4x, parabola symmetric to x axis and the circle ๐๐ + ๐๐ =
๐
at (0,0 ) and radius ๐
Sketch both the curves and shaded the area
41
๐
๐
circle with centre
42
The point of intersection of y2 =4x and ๐๐ + ๐๐ =
๐
๐
are the points (0, 0 ) (๐ , โ๐)
๐
Required area = 2 × Area of OBALO
= 2×[ area of OBLO + area of BLAB]
๐
๐
๐
= 2 (โซ๐๐ ๐โ๐ + โซ๐๐ โ๐ โ ๐๐ ) dx
๐
๐
= 2 {(๐
=
๐๐
๐
โ
๐
๐๐
๐
๐
๐
)๐
๐
๐
๐
๐
+ [๐ โ๐ โ ๐๐ +
๐ฌ๐ข๐งโ๐ (๐) +
๐
โ๐
๐
๐
๐๐
๐ฌ๐ข๐งโ๐ ๐ ] ๐๐}
๐
๐
๐
sq. units
3. Find the area bounded between the lines y = 2x + 1 , y = 3x + 1 , x= 4 using integration
Solution:
Draw the rough sketch and shaded the area
๐
Area enclosed = โซ๐ (๐ (๐) โ ๐(๐))๐
๐
๐
= โซ๐ (๐๐ + ๐ โ ๐๐ โ ๐) dx
๐
4.
= โซ๐ ๐ ๐
๐
๐๐ ๐
= [ ๐ ] = 8 sq.units
๐
Find the area of the region { (x,y): ๐ โค ๐ โค ๐๐ + ๐, ๐ โค ๐ โค ๐ + ๐, ๐ โค ๐ โค ๐}
Solution
Sketch the region whose area is to be found out.
42
43
The point of intersection of y = x2 +1 and y = x+1 are he points (0,1 ) and (1,2 )
The required area = area of the region OPQRSTO
= area of the region OTQPO + area of the region TSRQT
๐
๐
= โซ๐ (๐๐ + ๐ )๐
๐ + โซ๐ (๐ + ๐ ) ๐
๐
๐๐
๐๐
๐
๐
= [ ๐ + ๐]
+ [ ๐ + ๐]
๐
๐
๐๐
= ๐ sq.units
5. Find the area cut off from the parabola 4y = 3 x2 by the line 2y = 3x + 12
Solution
Given 4y = 3x2 and 3x โ 2y +12 = 0
Solve both the equation we get the point of
intersecction of both the curves
(-2,3) and (4,12)
Required area = area of AOBA
๐ ๐๐+๐๐
= โซโ๐[
๐
โ
๐๐๐
๐
] dx
= 27 sq.unts
43
44
PRACTICE PROBLEMS
LEVEL I
1. Find the area of the region bounded by the parabola y2 = 4ax , its axis and two ordinates x = 4
and x = 9
2. Find the area bounded by the parabola x2 = y , y axis and the line y =1
3. Find the area bounded by the curve y = 4x โ x2 , x axis and the ordinates x = 1 and x = 3
4. Find the area of the region bounded by the curve y2 = 4x and the line x = 3
LEVEL II
1. Find the area of the region { (x,y) : x + y2 โค 4, ๐ฅ + ๐ฆ โฅ 2}
2. Find the of the circle x2 + y2 = a2
3. Find the area of the region { (x , y) : ๐ฆ 2 โค 6๐ฅ , ๐ฅ 2 + ๐ฆ 2 โค 16}
4. Sketch the region common to the circle x2 + y2 = 4 and the parabola y2 = 4 x. Also find the
area of the region by integration.
2
๐ฅ2
5. Find the area of the ellipse ๐2 +
๐ฆ2
๐2
=1
6. Find the area of the smaller region bounded by the ellipse
๐ฅ
3
๐ฆ
๐ฅ2
9
+
๐ฆ2
4
= 1 and the straight line
+2=1
7. Find the area enclosed by the curve x = 3 cos t, y = 2 sin t.
8. Find the area bounded by the lines x +2y = 2, y โ x = 1 and 2x + y = 7
3
9. Find the area of the region bounded by the parabola ๐ฆ = 4 ๐ฅ 2 and the line 3x โ 2y +12 =0
10. Using integration, find the area of the triangle ABC with vertices A (-1, 0 ), B (1 , 3 ) and C
(3, 2)
LEVEL III
1. Using integration find the area of the following region { (๐ฅ, ๐ฆ ): |๐ฅ + 2 | โค ๐ฆ โค
โ20 โ ๐ฅ 2 }
2. Sketch the region enclosed between the circles x2 + y2 = 1 and x2 + (y-1)2 = 1. Also find
the area of the region using integration
3. Find the area of the region lying above the x axis and included between the circle
x2 + y2 = 8x and the parabola y2 = 4x
4. Using the method of integration , find the area bounded by the curve |x| + |y| = 1
44
45
1.
2.
3.
DIFFERENTIAL EQUATIONS
INTRODUCTION
Problems based on the order and degree of the differential equations
Working rule
(a) In order to find the order of a differential equations, see the highest derivative in the
given differential equation. Write down the order of this highest order derivatives.
(b) In order to find the degree of a differential equation write down the power of the
highest order derivative after making the derivatives occurring in the given differential
equation free from radicals and fractions.
Problems based on formation of differential equation.
Working rule
(a) Write the given equation.
(b) Differentiate the given equation w.r.t. independent variable of x as many times as the
number of arbitrary constants.
(c) Eliminate the arbitrary constants from given equation and the equations obtained by
differentiation.
Problems based on solution of differential equation in which variables are separable.
Working rule
This differential equation can be solved by the variable separable method which can be
put in the form
๐๐ฆ
๐๐ฅ
= ๐(๐ฅ). ๐(๐ฆ).
๐๐ฆ
i.e., in which ๐๐ฅ can be expressed as the product of two functions, one of which is
a function of x only and the other a function of y only.
๐๐ฆ
In order to solve the equation ๐๐ฅ = ๐(๐ฅ). ๐(๐ฆ). Write down this equation in the
form
4.
5.
๐๐ฆ
๐(๐ฆ)
๐๐ฆ
= ๐(๐ฅ). ๐๐ฅ, then the solution will be โซ ๐(๐ฆ) = โซ ๐(๐ฅ)๐๐ฅ + ๐, where C is an
arbitrary constant.
Problems based on solution of differential equations which are homogeneous.
Working rule
๐๐ฆ
(a)
Write down the given differential equation in the form ๐๐ฅ = ๐(๐ฅ, ๐ฆ)
(b)
If ๐(๐๐ฅ, ๐๐ฆ) = ๐(๐ฅ, ๐ฆ). then differential equation is homogeneous.
(c)
In order to solve, put ๐ฆ = ๐ฃ๐ฅ, so that ๐๐ฅ = ๐ฃ + ๐ฅ
(d)
variables ๐ฅ and ๐ฃ.
Now solve the obtained differential equation by the variable separable
๐ฆ
method. At the end put ๐ฅ in place of ๐ฃ.
๐๐ฆ
๐๐ฃ
๐๐ฅ
and then separate the
Working Rule for Linear Differential Equation of first degree:
(a)
Type 1.
๐๐ฆ
๐๐ฅ
+ ๐๐ฆ = ๐ , where P and Q are constants or function of x only
General solution is ๐ฆ. ๐ผ๐น = โซ(๐. ๐ผ๐น)๐๐ฅ + ๐ถ , where ๐ผ๐น = ๐ โซ ๐๐๐ฅ .
45
46
(b)
๐๐ฅ
Type 2.
+ ๐๐ฅ = ๐ , where P and Q are constants or function of y only
๐๐ฆ
General solution is ๐ฅ. ๐ผ๐น = โซ(๐. ๐ผ๐น)๐๐ฆ + ๐ถ , where ๐ผ๐น = ๐ โซ ๐๐๐ฆ .
Note: Particular solution can be obtained after getting the value of parameter C by
substituting the given initial values of the variables.
1.
IMPORTANT SOLVED PROBLEMS
Solve the differential equation (x + y ) dy + ( x โ y ) dx = 0
Solution
(x + y ) dy + ( x โ y ) dx = 0
๐๐ฆ
=
๐๐ฅ
๐ฆโ๐ฅ
๐ฅ+๐ฆ
Put y = vx
๐๐ฆ
=๐ฃ+๐ฅ
๐๐ฅ
๐๐ฃ
โด ๐ฃ+๐ฅ
๏ฐ ๐ฃ+๐ฅ
๏ฐ ๐ฅ
๏ฐ ๐ฅ
=
๐ฅ + ๐ฃ๐ฅ
๐ฃโ1
=
๐๐ฅ
=
๐๐ฅ
๐๐ฃ
๐ฃ๐ฅโ๐ฅ
=
๐๐ฅ
๐๐ฃ
๐๐ฃ
๐๐ฅ
1+๐ฃ
๏ฐ
๐๐ฃ
๐๐ฅ
๐ฃ+1
๐ฃโ1
โ ๐ฃ
๐ฃ+1
โ( 1+ ๐ฃ 2 )
1+๐ฃ
๐๐ฃ = โ
1+ ๐ฃ 2
๐๐ฅ
๐ฅ
Integrating both sides we get
1+๐ฃ
โซ 1+ ๐ฃ2 ๐๐ฃ = - โซ
๐๐ฃ
โซ 1+ ๐ฃ2 +
1
โซ
๐๐ฅ
๐ฅ
2๐ฃ
2 1+๐ฃ 2
1
๐๐ฃ = โ log ๐ฅ + ๐
tanโ1 ๐ฃ + 2 log|1 + ๐ฃ 2 | = โ log ๐ฅ + ๐
๐ฆ
1
๐ฆ
2
1
tanโ1 ๐ฅ +
tanโ1 ๐ฅ +
2.
2
๐๐๐ (1 +
๐ฆ2
)
๐ฅ2
2)
๐๐๐ (๐ฅ 2 + ๐ฆ
= โ๐๐๐ ๐ฅ + ๐
= ๐
Solve ๐ฅโ1 โ ๐ฆ 2 ๐๐ฅ + ๐ฆ โ1 โ ๐ฅ 2 ๐๐ฆ = 0
Solution
๐ฅโ1 โ ๐ฆ 2 ๐๐ฅ
๐ฅ
โ1โ ๐ฅ 2
= - ๐ฆ โ1 โ ๐ฅ 2 ๐๐ฆ
๐๐ฅ = โ
๐ฆ
โ1โ ๐ฆ 2
Integrating both sides
๐ฅ
๐ฆ
โซ โ1โ 2 ๐๐ฅ = - โซ
๐ฅ
โ1
2
๐๐ก
โซ โ๐ก =
1
2
๐๐ฆ
โ1โ ๐ฆ 2
๐๐ข
โซ โ๐ข
๐๐ฆ
( put t = 1 โ x2 and put u = 1 โ y2 )
46
47
โ โ๐ก = โ๐ข + C
โ1 โ ๐ฅ 2 + โ 1 โ ๐ฆ 2 = ๐ถ
3.
Solve the differential equation
๐๐ฆ
๐๐ฅ
โ
1
๐ฅ
. ๐ฆ = 2๐ฅ 2
Solution
๐๐ฆ
The diff.eqn is in the form ๐๐ฅ + ๐๐ฆ = ๐
โ1
Where P =
and Q = 2x2
๐ฅ
โ1
= ๐ โซ ๐ฅ ๐๐ฅ
I.F = ๐ โซ ๐ ๐๐ฅ
= ๐ โ๐๐๐ ๐ฅ
=
1
๐ฅ
Multiplying both sides of diff.eqn by I.F we get
1 ๐๐ฆ
๐๐ฅ
1
โ
๐ฅ ๐๐ฅ
๐
๐ฅ2
๐ฆ = 2๐ฅ
1
(๐ฆ. ๐ฅ) = 2๐ฅ
Integrating both sides w.r.t.x we get
1
๐ฆ. ๐ฅ = ๐ฅ 2 + ๐
y = x3
4.
+ Cx
Solve the diff. eqn ๐ฅ
๐๐ฆ
๐ฆ
= ๐ฆ โ ๐ฅ tan ๐ฅ
๐๐ฅ
Solution
๐๐ฆ
๐ฆ
๐ฅ
๐ฆโ๐ฅ tan
=
๐๐ฅ
๐ฅ
๐๐ฆ
Put y = vx =>
๐๐ฃ
โด ๐ฃ+๐ฅ
๐๐ฅ
๐๐ฃ
=๐ฃ+๐ฅ
๐๐ฅ
๐ฃ๐ฅโ๐ฅ ๐ก๐๐๐ฃ
=
๐๐ฅ
๐ฅ
๏ฐ ๐ฃ+๐ฅ
๏ฐ ๐ฅ
๐๐ฃ
๐๐ฅ
๐๐ฃ
๐๐ฅ
= v โ tan v
= โ๐ก๐๐ ๐ฃ
๏ฐ cot v dv = -
๐๐ฅ
๐ฅ
Integrating both sides ,we get
โซ ๐๐๐ก ๐ฃ ๐๐ฃ
= โโซ
๐๐ฅ
๐ฅ
log sin v = - log x + log C
๐ฆ
log [x. sin (๐ฅ ) ] = ๐๐๐ ๐
๐ฆ
x sin (๐ฅ ) = C
5.
๐ฅ๐ฆ
๐๐ฆ
๐๐ฅ
= (๐ฅ + 2 )(๐ฆ + 2 ) , find the equation of the curve passing through the points (1, -
1)
Solution
๐ฅ๐ฆ
๐๐ฆ
๐๐ฅ
= (๐ฅ + 2 )(๐ฆ + 2 )
47
48
๏ฐ
๐ฆ
๐๐ฆ =
๐ฆ+2
๏ฐ (1 โ
๐ฅ+2
๐ฅ
๐๐ฅ
2
2
) ๐๐ฆ = (1 + ๐ฅ) ๐๐ฅ
๐ฆ+2
๏ฐ Integrating both sides weget
๏ฐ Y โ2 log (y + 2 ) = x +2 log x + C
The curve is pasing through the the point (1,-1)
- 1 โ2 log 1 = 1 + 2 log 1 + C => C = -2
The equation of the line is ๐ฆ โ ๐ฅ = 2 ๐๐๐[x(y+2)] โ 2
6.
๐๐ฆ
Solve the differential equation (๐ฅ 2 โ 1) ๐๐ฅ + 2๐ฅ๐ฆ =
2
๐ฅ 2 โ1
Solution
(๐ฅ 2 โ 1)
๐๐ฆ
๐๐ฅ
2๐ฅ
๐๐ฆ
+ 2๐ฅ๐ฆ =
+ (๐ฅ 2 โ1) . ๐ฆ =
๐๐ฅ
2๐ฅ
I.F. = ๐ โซ ๐ฅ2โ1
๏ฐ
๐
๐๐ฅ
๐๐ฅ
2
๐ฅ 2 โ1
2
(๐ฅ 2 โ1)2
= ๐ ๐๐๐(๐ฅ
(๐ฆ (๐ฅ 2 โ 1)) =
2 โ1)
= (๐ฅ 2 โ 1)
2
๐ฅ 2 โ1
Integrating both sides w.r.t x we get
2
๐ฆ (๐ฅ 2 โ 1) = โซ ๐ฅ 2 โ1 ๐๐ฅ
๐ฅโ1
๐ฆ (๐ฅ 2 โ 1) = ๐๐๐ (๐ฅ+1) + ๐ถ
PRACTICE PROBLEMS
LEVEL I
1.
Find the order and degree of the following differential equation.
๐3 ๐ฆ
2
๐๐ฆ 3
(๐๐ฅ 3 ) โ ๐ฅ (๐๐ฅ ) = 0
2.
Show that ๐ฆ = ๐ด๐ฅ +
๐2 ๐ฆ
๐ต
๐ฅ
is a solution of the differential equation.
๐๐ฆ
๐ฅ 2 ๐๐ฅ 2 + ๐ฅ ๐๐ฅ โ ๐ฆ = 0
3.
4.
5.
6.
Form the differential equation corresponding to ๐ฆ 2 โ 2๐๐ฆ + ๐ฅ 2 = ๐2 by eliminating a.
Form the differential equation representing the family of curves ๐ฆ = ๐ ๐ ๐๐ (๐ฅ + ๐),
where ๐, ๐ are arbitrary constants.
Solve the differential equation.
๐ ๐๐ 2 ๐ฅ ๐ก๐๐ ๐ฆ ๐๐ฅ + ๐ ๐๐ 2 ๐ฆ ๐ก๐๐ ๐ฅ ๐๐ฆ = 0
Solve the differential equation.
๐๐ฆ
๐๐ฅ
=
1+ ๐ฆ2
1+ ๐ฅ 2
48
49
LEVEL II
Solve the following differential equations.
๐๐ฆ
1.
๐๐ฅ
+
1
. ๐ฆ = 2๐ฅ 2
๐ฅ
(๐ฅ 2 + ๐ฅ๐ฆ)๐๐ฆ = (๐ฅ 2 + ๐ฆ 2 )๐๐ฅ
2.
๐๐ฆ
3.
๐๐ฅ
+
4๐ฅ
๐ฅ 2 +1
๐๐ฆ
๐ฆ+
1
(๐ฅ 2 +1)2
=0
+ ๐๐๐ ๐ฅ. ๐ฆ = ๐๐๐ ๐ฅ. ๐ ๐๐2 ๐ฅ
4.
๐ ๐๐ ๐ฅ
5.
3๐ ๐ฅ ๐ก๐๐ ๐ฆ ๐๐ฅ + (1 โ ๐ 2 ) ๐ ๐๐ 2 ๐ฆ ๐๐ฆ = 0, ๐๐๐ฃ๐๐ ๐กโ๐๐ก ๐ฆ =
6.
(๐ฅ 3 + ๐ฆ 3 )๐๐ฆ โ ๐ฅ 2 ๐ฆ ๐๐ฅ = 0
7.
๐๐๐ 2 ๐ฅ
๐๐ฆ
8.
๐๐ฅ
๐๐ฅ
๐๐ฆ
๐๐ฅ
4
, ๐คโ๐๐ ๐ฅ = 1.
+ ๐ฆ = ๐ก๐๐ ๐ฅ
+ ๐ฆ = ๐๐๐ ๐ฅ โ ๐ ๐๐ ๐ฅ
๐ฅ ๐๐๐ ๐ฅ
9.
๐
๐๐ฆ
+๐ฆ =
๐๐ฅ
2
๐ฅ
๐๐๐ ๐ฅ
LEVEL III
Solve the following differential equations
๐๐ฆ
๐๐ฆ
1.
y โ x ๐๐ฅ = a (๐ฆ 2 + ๐ฅ 2 ๐๐ฅ )
2.
( 1 + sin2x ) dy + ( 1 + y2 ) cos x dx = 0, given that x = 2 , y = 0
3.
( x3 + x2 + x +1)
๐๐ฆ
๐๐ฅ
๐
= 2x2 + x
49
50
VECTORS
SUMMARY
1. Position vector of a point P(x,y,z) is given as โโโโโ
๐๐( ๐) = ๐ฅ๐ฬ + ๐ฆ๐ฬ + ๐ง๐ฬ, and its magnitude
by โ๐ฅ 2 + ๐ฆ 2 + ๐ง 2 .
2. The scalar components of a vector are its direction ratios, and represent its projections
along the respective axes.
3. The magnitude(r),direction ratios (๐, ๐, ๐)and direction cosines (๐, ๐, ๐ ) of any vector
๐
๐
๐
are related as: ๐ = ๐ , ๐ = ๐ , ๐ = ๐
4. The vector sum of the three sides of a triangle taken in order is 0 .
5. The vector sum of two coinitial vectors is given by the diagonal of the parallelogram
whose adjacents sides are the given vectors.
6. The multiplication of a given vector by a scalar ฮฑ, changes the magnitude of the given
vector by the multiple โฮฑโ, and keeps the direction same (or makes it opposite)
according as the value of ฮฑ is positive (or negative).
๐โ
7. For a given vector ๐ , the vector ๐ฬ = | ๐โ | gives the unit vector in the direction of ๐.
8. The position vector of a point R dividing a line segment joining the points P and Q
whose position vectors are ๐ and ๐โ respectively , in the ratio m : n
โ +๐๐โ
๐๐
(i)
internally , is given by ๐
โ =
(ii)
externally, is given by ๐
โ =
(iii)
๐ +๐โ
if R is the mid point of PQ, then ๐
โ = 2 .
๐+๐
โ โ๐๐โ
๐๐
๐โ๐
.
.
โ
9. The scalar product of two given vectors ๐ and ๐โ having angle ๐ between them is defined
as ๐. ๐โ= ว ๐ว ว๐โว cos ๐.
Also, when ๐. ๐โ is given, the angle โ๐โฒ between the vectors ๐ and ๐โ may be determined by
โ
๐โ.๐
cos ๐ = ว ๐โว ว๐โว .
10. Product is given as ๐ × ๐โ = |๐||๐โ| sin ๐ ๐ฬ ,where ๐ฬ is a unit vector perpendicular to the
plane containing ๐ and ๐โ such that ๐, ๐โ, ๐ฬ form right handed system of co-ordinate axes.
11. If we have two vectors ๐ and ๐โ , given in component form as
๐ = ๐1 ๐ฬ + ๐1 ๐ฬ + ๐1 ๐ฬ and ๐โ = ๐2 ๐ฬ + ๐2 ๐ฬ + ๐2 ๐ฬ
and ฮป any scalar, then
๐ + ๐โ = (๐1 + ๐2 )๐ฬ + (๐1 + ๐2 )๐ฬ + (๐1 + ๐2 )๐ฬ
ฮป๐=ฮป๐1 ๐ฬ + ฮป๐1 ๐ฬ+ ฮป๐1 ๐ฬ
50
51
โโโ . ๐โ= ๐1 ๐2 + ๐1 ๐2 + ๐1 ๐2
๐
๐ฬ
โ
And โโโ
๐ × ๐ = |๐1
๐2
๐ฬ
๐1
๐2
๐ฬ
๐1 |
๐2
Practice problems
LEVEL-1
1) Find the projection of ๐ฬ - ๐ฬ on ๐ฬ + ๐ฬ .
2) If |๐| =2, |๐โ| =โ3 and ๐ .๐โ =โ3.Find the angle between ๐ and ๐โ .
3) Find the value of ฮป when the projection of ๐ =ฮป๐ฬ + ๐ฬ +4๐ฬ on ๐โ =2๐ฬ +6๐ฬ+3๐ฬ is 4 units.
4) Find ๐ . ( ๐โ x ๐ ) ,if ๐ = 2๐ฬ + ๐ฬ + 3๐ฬ, ๐โ = โ๐ฬ + 2๐ฬ + ๐ฬ and ๐ = 3๐ฬ + ๐ฬ + 2๐ฬ Ans:โ๐๐
5) Show that the four points A, B, C and D with position vectors 4๐ฬ + 5๐ฬ + ๐ฬ, โ๐ฬ โ ๐ฬ,
3๐ฬ + 9๐ฬ + 4๐ฬ and 4 ( โ๐ฬ + ๐ฬ + ๐ฬ ) respectively are coplanar.
LEVEL-2
1. Find the angle between the vectors ๐ฬ -2๐ฬ+3๐ฬ and 3๐ฬ -2๐ฬ+๐ฬ .
2. Find |๐ โ ๐โ| if |๐| =2, |๐โ| =3 and ๐ .๐โ = 4.
3. If ๐ is a unit vector and (๐ฅ - ๐ ) . (๐ฅ + ๐) =15. Find |๐ฅ| .
4. If ๐ and ๐โ are two vectors such that |๐ + ๐โ| =|๐| then prove that the vector 2๐ + ๐โ is
perpendicular to ๐โ .
5. If vectors ๐ =2๐ฬ +2๐ฬ+3๐ฬ, ๐โ =๐ฬ +๐ฬ+๐ฬ and ๐ =3๐ฬ +๐ฬ are such that ๐ + ฮป โโ๐ is perpendicular
toโโ๐ . Find the value of ฮป.
6. If A and B be two points with position vectors 2๐ฬ โ ๐ฬ + 2๐ฬ and ๐ฬ + 2๐ฬ respectively. Find
the position vector of the point which divides AB in 1 : 2 internally.
LEVEL-3
1. Find the value of p so that ๐ =2๐ฬ + p๐ฬ +๐ฬ and ๐โ =๐ฬ -2๐ฬ+3๐ฬ are perpendicular to each
other.
2. Find |๐| if |๐|=2|๐โ| and (๐ +๐โ ) . (๐ -๐โ ) = 12.
3. If |๐ + ๐โ| =60, |๐ โ ๐โ| =40 and |๐โ| =46. Find |๐| .
โ in the direction
4. If ๐= (3๐ฬ + 2๐ฬ โ 3๐ฬ) and ๐โ = (4๐ฬ + 7๐ฬ โ 3๐ฬ) Find vector projection of ๐
of ๐โ.
5. The two adjacent sides of a parallelogram are (2iห ๏ญ 4 หj ๏ซ 5kห) & (iห ๏ญ 2 j ๏ญ 3kห) .Find the unit
vectors parallel to its diagonals. Also find its area.
51
52
6. If (iห ๏ซ หj ๏ซ kห), (2iห ๏ซ 5 หj ๏ญ 3kห), (3iห ๏ซ 2 หj ๏ญ 2kห) & (iห ๏ญ 6 j ๏ญ kห) are the position vectors of points
A, B, C & D respectively, then find the angle between AB & CD. Deduce that AB & CD
are parallel.
7. Find the value of ๐ such that the vectors (3iห ๏ซ ๏ฌหj ๏ซ 5kห), (iห ๏ซ 2 หj ๏ญ 3kห) & ( 2iห ๏ญ j ๏ซ kห)
are coplanar.
8. The scalar product of the vector ๐ = ๐ฬ + ๐ฬ + ๐ฬ with a unit vector along the sum of the
vectors ๐โ = 2๐ฬ + 4๐ฬ โ 5๐ฬ and ๐ = ๐๐ฬ + 2๐ฬ + 3๐ฬ is equal to one .Find the value of ๐ and
๐
ฬ)
hence find the unit vector along ๐โ + ๐
Ans:๐ =1, (๐๐ฬ + ๐๐ฬ โ ๐๐
๐
9. Find the value of ๐ if the points A( -1,4,-3 ),B(3,๐,-5),C(-3,8,-5) and D(-3,2,1) are
coplanar. Ans: ๐ = ๐
52
53
3D GEOMETRY
INTRODUCTION
Summary
1. Distance formula: Distance between two points A (๐ฅ1 , ๐ฆ1 , ๐ง1 ) and B (๐ฅ2 , ๐ฆ2 , ๐ง2 ) is
AB=โ(๐ฅ2 โ ๐ฅ1 )2 + (๐ฆ2 โ ๐ฆ1 )2 + (๐ง2 โ ๐ง1 )2
2. Section formula: Coordinates of a point P, which divides the line segment joining two
given points
A(๐ฅ1 , ๐ฆ1 , ๐ง1 ) and B(๐ฅ2 , ๐ฆ2 , ๐ง2 ) in the ratio m:n
(i). internally,
๐๐ฅ2 +๐๐ฅ1 ๐๐ฆ2 +๐๐ฆ1 ๐๐ง2 +๐๐ง1
are P (
๐+๐
,
๐+๐
,
๐+๐
),
the Coordinates of a point Q divides the line segment joining two given points in the
ratio m:n
(ii). externally are Q (
๐๐ฅ2 โ๐๐ฅ1 ๐๐ฆ2 โ๐๐ฆ1 ๐๐ง2 โ๐๐ง1
๐โ๐
,
,
)
๐โ๐
๐โ๐
๐ฅ2 +๐ฅ1 ๐ฆ2 +๐ฆ1 ๐ง2 +๐ง1
(iii).coordinate of mid-point are R(
,
2
2
,
2
)
3. Direction cosines of a line :
(i).The direction of a line OP is determined by the angles ๐ผ, ๐ฝ, ๐พ which makes with OX,
OY,OZ respectively. These angles are called the direction angles and their cosines are
called the direction cosines.
(ii).Direction cosines of a line are denoted by l, m, n; l = cos ๐ผ ,m = cos ๐ฝ, ๐ = cos ๐พ
(iii).Sum of the squares of direction cosines of a line is always 1.
l2 + m2 + n2 =1
i.e cos2๐ผ + cos2๐ฝ + cos2๐พ = 1
4. Direction ratio of a line :(i)Numbers proportional to the direction cosines of a line
are called direction ratios of a line .If a ,b ,c, are , direction ratios of a line, then
๐
๐
=
๐
๐
๐
= ๐.
(ii). If a ,b ,c, are , direction ratios of a line , then the direction cosines are
± โ๐2
๐
+๐2 +๐ 2
, ± โ๐2
๐
+๐2 +๐ 2
± โ๐2
๐
+๐2 +๐ 2
(๐๐๐). Direction ratio of a line AB passing through the points A(x1, y1, z1) and
B (x2, y2, z2) are ๐ฅ2 โ ๐ฅ1 , ๐ฆ2 โ ๐ฆ1 , ๐ง2 โ ๐ง1
5. STRAIGHT LINE:. (i). Vector equation of a Line passing through a point ๐ and along
โ , : ๐ = ๐ + ๐๐โ,
the direction ๐
(ii).Cartesian equation of a Line:
๐ฅโ๐ฅ1
๐
=
๐ฆโ๐ฆ1
๐
=
๐งโ๐ง1
๐
. Where (x1, y1, z1 ) is the given
point and its direction ratios are a,b,c.
6. (i). Vector equation of a Line passing through two points, with position vectors ๐ ๐๐๐ ๐โ
โ -๐)
๐=๐ + ๐(๐
๐ฅโ๐ฅ
๐ฆโ๐ฆ
๐งโ๐ง
(ii). ).Cartesian equation of a Line:๐ฅ โ๐ฅ1 = ๐ฆ โ๐ฆ1 = ๐ง โ๐ง1 , two points are (x1,y1) and
2
1
2
(x2,y2).
53
1
2
1
54
โโโ1 and ๐ = โโโโ
โโโโ2,
7. ANGLE between two lines (i). Vector equations: ๐ = โโโโ
๐1 + ๐๐
๐2 + ๐๐
(ii) ).Cartesian equations: If lines are
๐ฅโ๐ฅ1
๐1
=
๐ฆโ๐ฆ1
๐1
=
๐งโ๐ง1
๐1
,
๐ฅโ๐ฅ2
๐2
=
๐ฆโ๐ฆ2
๐2
=
๐งโ๐ง2
๐2
โโโโโ . ๐2
โโโโโ
๐1
โโโโโ
โโโโโ |
|๐1|.|๐2
cos ๐ =
(iii). If two lines are perpendicular, then ๐โ1. ๐โ2 = 0, i.e. ๐1 ๐2 + ๐1 ๐2 + ๐1 ๐2 = 0
(iv) . If two lines are parallel, then ๐โ1 = ๐ก ๐โ2 , where t is a scalar. OR ๐โ1 × ๐โ2 = 0, OR
๐1
๐2
๐
๐
= ๐1 = ๐1
2
2
(v).If ๐ ๐๐ ๐กโ๐ angle between two lines with direction cosines ,l1, m1, n1 and l2, m2, n2
then
(a).cos ๐ =l1l2 + m1m2 + n1n2
(b). if the lines are parallel, then
๐1
๐2
๐
๐
= ๐1 = ๐1
2
2
(c). If the lines are perpendicular, then l1l2 + m1m2 + n1n2=0
8.(a).Shortest distance between two skew- lines:
โโโ1 , and: : ๐=๐
โโโโ2,
(i).Vector equations: ๐=๐
โโโโ1 + ๐๐
โโโโ2 + ๐๐
d=|
โโโโโ ×๐2
โโโโโ )
โโโโโ โ๐1
โโโโโ ).(๐1
(๐2
|.
โโโโโ ×๐2
โโโโโ |
|๐1
If shortest distance is zero, then lines intersect and line intersects in space if they are
coplanar. Hence if above lines are coplanar
โโโโ × โโโโ
โโโโ โ โโโโ
If (๐2
๐1). (๐1
๐2) = 0
(ii). Cartesian equations:
๐ฅโ๐ฅ1
๐1
=
๐ฆโ๐ฆ1
๐1
=
๐งโ๐ง1 ๐ฅโ๐ฅ2
๐1
,
๐2
=
๐ฆโ๐ฆ2
๐2
=
๐งโ๐ง2
๐2
9.If shortest distance is zero, then lines intersect and line intersects in space if they are
coplanar. Hence if above lines are coplanar
๐ฅ2 โ ๐ฅ1 ๐ฆ2 โ ๐ฆ1 ๐ง2 โ ๐ง1
๐1
๐1 | = 0
| ๐1
๐2
๐2
๐2
(b).Shortest distance between two parallel lines: If two lines are parallel, then they are
coplanar.
Let the lines be : ๐=๐
โโโโ1 + ๐๐โ, and: ๐=๐
โโโโ2 + ๐๐โ,
โ ×(๐2
โโโโโ โ๐1
โโโโโ )
๐
|
โ|
|๐
D=|
10.General equation of a plane in vector form :- It is given by ๐. ๐โ + ๐ = 0 , ๐โ is a vector
normal to plane.
11.General equation of a plane in Cartesian form :- ๐๐ + ๐๐ + ๐๐ + ๐
= ๐ , Where a,b,c are
direction ratios of normal to the plane.
54
55
12.General equation of a plane passing through a point :- if position vector of given point is
๐ then equation is given by ( ๐ โ ๐). ๐โ = 0, ๐โ is a vector perpendicular tothe plane.
13.General equation of a plane passing through a point :- if coordinates of point are(๐ฅ, ๐ฆ, ๐ง)
then equation is ๐(๐ฅ โ ๐ฅ1 ) + ๐(๐ฆ โ ๐ฆ1 ) + ๐(๐ง โ ๐ง1 ) = 0, a,b,care direction ratios of a line
perpendicular to the plane.
14.Intercept form of equation of a plane :-General equation of a plane which cuts off
๐ฅ
๐ฆ
๐ง
intercepts a, b and c on x-axis, y-axis, z-axis respectively is ๐ + ๐ + ๐ = 1.
15. Equation of a plane in normal form:- ๐. ๐ฬ = p,where ๐ฬ is a unit vector along perpendicular
from origin and โpโ is distance of plane from origin.p is always positive.
16.Equation of a plane in normal form :- It is given by ๐๐ฅ + ๐๐ฆ + ๐๐ง = ๐, where ๐, ๐, ๐ are
direction cosines of perpendicular from origin and โpโ is distance of plane from origin. p is
always positive.
17.Equation of a plane passing through three non-collinear points :- If ๐, ๐โ, ๐ are the position
vectors of three non-collinear points, then equation of a plane through three points is given by โ
(๐ โ ๐ ). {(๐โ โ ๐) × (๐ โ ๐)} = 0.
18. Equation of a plane passing through three non-collinear points(Cartesian system) :- If
plane passing through points (๐๐ , ๐๐ , ๐๐ ) , (๐๐ , ๐๐ , ๐๐ ) and (๐๐ , ๐๐ , ๐๐ ) then equation is(๐ฅ โ ๐ฅ1 ) (๐ฆ โ ๐ฆ1)
(๐ง โ ๐ง1)
|(๐ฅ2 โ ๐ฅ1 ) (๐ฆ2 โ ๐ฆ1 ) (๐ง2 โ ๐ง1 )| = 0
(๐ฅ3 โ ๐ฅ1 ) (๐ฆ3 โ ๐ฆ1 ) (๐ง3 โ ๐ง1 )
โ . โโโโ
โ . โโโโ
19.If ๐ฝ is angle between two planes ๐
๐๐ + ๐
๐ = ๐ and ๐
๐๐ + ๐
๐ = ๐ then cos ๐ =
โโโโโ
โโโโโ2
๐1 .๐
|๐
โโโโโ1 ||๐
โโโโโ2 |
(i) If planes are perpendicular, then โโโโ
๐1 . โโโโ
๐2 =0
(ii) If planes are parallel, then โโโโ
๐1 × โโโโ
๐2 = 0 or โโโโ
๐1 = ๐ โโโโ
๐2 , ๐ is a scalar.
20. If ๐ฝ is angle between two planes ๐๐ ๐ + ๐๐ ๐ + ๐๐ ๐ + ๐
๐ = ๐ ๐๐๐
๐๐ ๐ + ๐๐ ๐ + ๐๐ ๐ +
๐
๐ = ๐
Then ๐๐จ๐ฌ ๐ฝ =
๐๐ ๐๐ +๐๐ ๐๐ +๐๐ ๐๐
โ(๐๐ ๐ +๐๐ ๐ +๐๐ ๐ )( ๐๐ ๐ +๐๐ ๐ +๐๐ ๐ )
(i)
If planes are perpendicular ,then ๐1 ๐2 + ๐1 ๐2 + ๐1 ๐2 = 0
(ii)
If planes are parallel , then
๐1
๐2
โ =๐
โ + ๐๐
โโโ
21. If ๐ฝ is angle between line ๐
๐
๐
= ๐1 = ๐1
2
2
โ .๐
โ + ๐
= ๐ ,then ๐ฌ๐ข๐ง ๐ฝ =
and the plane ๐
โโโ .๐
๐
โ
|๐
โโโ |.|๐
โ|
(i)If line is parallel to plane ,then ๐
โโ . ๐โ =0 and
(ii)If line is perpendicular to plane , then
๐
โโ × ๐โ = 0 or ๐
โโ = ๐ก๐โ ,t is a scalar.
๐โ๐๐
๐โ๐๐
๐โ๐๐
22 . If ๐ฝ is angle between line ๐ = ๐ = ๐ and the plane ๐๐ + ๐๐ + ๐๐ + ๐
= ๐
๐
๐
๐
,then
55
56
๐ฌ๐ข๐ง ๐ฝ =
๐๐๐ +๐๐๐ +๐๐๐
โ(๐๐ ๐ +๐๐ ๐ +๐๐ ๐ )( ๐๐ +๐๐ +๐๐ )
(i)If line is parallel to the plane ,then ๐๐1 + ๐๐1 + ๐๐1 = 0
๐
(ii)If line is perpendicular to the plane, then
๐1
๐
๐
1
1
=๐ =๐
23. General equation of a plane parallel to the plane ๐. ๐โ + ๐ = 0 ๐๐ ๐. ๐โ + ๐ = 0, where ๐ is a
constant and can be calculated from given condition.
24. General equation of a plane parallel to the plane ax + by + cz + d = 0 is ax + by + cz + ๐ = 0,
where ๐ is a constant and can be calculated from given condition.
25. General equation of a plane (vector form) passing through the line of the intersection of
planes
๐. โโโโ
๐1 + ๐1 = 0 and ๐. โโโโ
๐2 + ๐๐2 = 0 is ๐. (๐โ1 + ๐๐โ2 ) + (๐1 + ๐๐2 ) = 0 , where ๐ is a
constant and can be calculated from given condition.
26. General equation of a plane(Cartesian form) passing through the line of the intersection of
planes a1x+b1y+c1z+d1=0 and a2x+b2y+c2z+d2=0 is( a1x+b1y+c1z+d1)+ ๐ (a2x+b2y+c2z+d2 )=0 ,
where ๐ is a constant and can be calculated from given condition.
27. Distance of a plane(vector form) ๐. ๐โ + ๐ = 0
โ +๐
๐โ.๐
|.
|๐
โ|
, from a point with position vector ๐ , is|
28. Distance of a plane(Cartesian form) ax+by+cz+d=0, , from a point (x1,y1,z1)
๐๐ฅ1 +๐๐ฆ1 +๐๐ง1 +๐
is|
โ๐2 +๐ 2 +๐ 2
|.
FLOW CHART
(a)
To find shortest distance between two skew lines
1
Find ๐1, ๐2 , ๐โ1 & ๐โ2
2
Find ๐2 โ ๐1
3
Findโโ๐1 × ๐โ2
5
Find |๐โ1 × ๐โ2 |
โโโ1 × โโโโ
(๐
๐2 ). (๐
โโโโ2 โ โโโโ
๐1 )
6
Distance = |
4
โ 1 ×๐
โ 2 ).(๐โ2 โ๐โ1 )
(๐
|
โ 1 ×๐
โ 2|
|๐
56
57
(b)
1.
2.
3.
4.
5.
To find Coordinates of foot of perpendicular from origin to the plane:
Direction ratio of any line perpendicular to the given plane.
Equation of the line through origin and perpendicular to the given plane.
Coordinates of any point(P) on the line.
Find the value of ฮป, by putting the coordinates of P in the plane.
Find required coordinates of foot of perpendicular
57
58
(c) To find coordinates of image of a point in the plane
1. Direction ratios of any line (PPโ) perpendicular to the given plane.
2. Equation of the line PPโ through a given point (P) and perpendicular the given plane.
3. Coordinates of any point on the plane (say Pโ)
4. Coordinates of midpoint (M) of PPโ
5. Find the value of r ,as M will satisfy the plane
6. Then find coordinates of Pโ Images of point P
58
59
QUESTIONS ON 3-D.
LEVEL-1
6) The equation of a line is given by
4โ๐ฅ
2
=
๐ฆ+3
=
๐ง+2
3
6
๐ ๐ ๐
. Write the direction cosines of a line
Ans:< ๐ , ๐ , ๐ >
parallel to given line.
7) Find the equation of the plane passing through the point (-1,3, 2) and perpendicular to the
planes x +2y +3z = 5 and3x +3y + z = 0.
8) Find the co-ordinates of the point where the line through (3, 4, 1) and (5, 1, 6) crosses the xyplane .
9) Find the shortest distance between the following pair of lines :
๐ฅโ1
2
=
๐ฆโ2
3
=
๐งโ3
4
;
๐ฅโ2
3
=
๐ฆโ4
4
=
๐งโ5
5
๐จ๐๐:
59
1
โ6
60
LEVEL-2
7. Find the Coordinate of foot of the perpendicular from origin to the plane 3x+4y-5z=7
8. Q 1: Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the
1 1 1
1
๏ซ 2๏ซ 2 ๏ฝ 2
2
p
origin, then a b c
9. Find the distance of the point (โ1, โ5, โ10) from the point of intersection of the line
๐ = (2๐ฬ โ ๐ฬ + 2๐ฬ) + ๐(3 ๐ฬ + 4๐ฬ + 2๐ฬ ) and the plane ๐. (๐ฬ โ ๐ฬ + ๐ฬ) =
5.
๐ด๐๐: 13 ๐ข๐๐๐ก๐ .
10. Find the distance between the point P(6,5,9) and the plane determined by the points
A(3, โ1,2),B(5,2,4) and C(โ1, โ1,6).
ANS:
6
units.
โ34
11. Find the equation of the plane passing through the points (3,4,1), (0,1,0) and is parallel to
line
๐ฅ+3
2
=
๐ฆโ3
7
=
๐งโ2
Ans:๐๐ โ ๐๐๐ + ๐๐๐ + ๐๐ = ๐
5
12. Find the values of p so that the lines :
right angles
1โ๐ฅ
3
=
7๐ฆโ14
2๐
=
๐งโ3
and
2
7โ7๐ฅ
3๐
=
๐ฆโ5
1
=
6โ๐ง
5
are at
๐๐
Ans: ๐๐
13. Find the shortest distance between the lines ๐ฅ + 1 = 2๐ฆ = โ12๐ง and ๐ฅ = ๐ฆ + 2 = 6๐ง โ
6 Ans: 2
14. Find the shortest distance between the following pair of lines :
๐ฅโ1
2
=
Ans:
๐ฆ+1
3
๐
=๐ง ;
๐ฅ+1
5
=
๐ฆโ2
1
,๐ง = 2
โ๐๐
LEVEL-3
10. Find the equation of the plane which is perpendicular to the plane 5 x ๏ซ 3 y ๏ซ 6 z ๏ซ 8 ๏ฝ 0
and
which
contains
the
line
of
intersection
of
the
planes
x ๏ซ 2 y ๏ซ 3z ๏ญ 4 ๏ฝ 0 and 2 x ๏ซ y ๏ญ z ๏ซ 5 ๏ฝ 0 .
Ans : 51x ๏ซ 15 y ๏ญ 50 z ๏ซ 173 ๏ฝ 0
11. Find the equation of a plane which is at a distance of 7 units from the origin and which is
๏
๏
๏
๏ฎ
๏
๏
๏
normal to the vector 3 i ๏ซ 5 j ๏ญ 6 k .
Ans.:- r .(3 i ๏ซ 5 j ๏ญ 6 k ) ๏ญ 7 70 ๏ฝ 0
12. Find a unit vector perpendicular to the plane of the triangle ABC, where the coordinates
of its vertices are A (3, โ1,2), B (1, โ1, โ3) and C (4, โ3,1).
60
61
Ans:
๐ฅ
13. Find the image of the point (1,6,3) in the line 1 =
๐
โ๐๐๐
๐ฆโ1
2
ฬ)
(๐๐๐ฬ + ๐๐ฬ โ ๐๐
=
๐งโ2
3
.
14. Find the image of the point (1,3,4) in the plane ๐ฅ โ ๐ฆ + ๐ง = 5.
15. Find the vector and the Cartesian equations of the plane passing through the intersection
of the planes ๐ . (๐ฬ + ๐ฬ + ๐ฬ) = 6 and ๐ . (2๐ฬ + 3๐ฬ + 4๐ฬ) = โ5 and the point(1, 1, 1).
ฬ ) = ๐๐
โ . (๐๐๐ฬ + ๐๐๐ฬ + ๐๐๐
Ans: ๐๐๐ + ๐๐๐ + ๐๐๐ โ ๐๐ = ๐ ๐
16. Find the shortest distance between the lines whose vector equations are:
๐ = (1 โ ๐ก)๐ฬ + (๐ก โ 2)๐ฬ + (3 โ 2๐ก)๐ฬ ๐๐๐ ๐ = (๐ + 1)๐ฬ + (2๐ โ 1)๐ฬ โ (2๐ + 1)๐ฬ
๐โ๐๐
Ans:
๐๐
17. . Find the distance of the point (1, โ2,3)๐๐๐๐ ๐กโ๐ plane x-y+z=5 measured โ to the
๐ฅ+1
line
2
=
๐ฆ+3
3
=
๐ง+1
.
โ6
9
ANS: other point (7 , โ
61
11 15
7
, 7 ) , ๐๐๐ ๐ก๐๐๐๐ = 1 ๐ข๐๐๐ก
62
Study Module of Linear programming problems
LINEAR PROGRAMMING
SCHEMATIC DIAGRAM
Topic
concept
Linear Programming
(i)Introduction
(ii)Some solved
problems
(iii) Diet Problem
Degree of
Importance
**
***
***
iv) Manufacturing
Problem
***
(v) Allocation
Problem
**
(vi) Transportation
Problem
*
vii) Miscellaneous
Problems
**
Introduction:
Linear programming problems: A Linear Programming Problem is one that is concerned with
finding the optimal value (maximum or minimum value) of a linear function (called objective
Function) of several variables (say x and y), subject to the conditions that the variables are nonnegative and satisfy a set of linear inequalities (called linear constraints).The term linear
implies that all the mathematical relations used in the problem are linear relations while the term
programming refers to the method of determining a particular plan of action.
Objective function : Linear function Z = ax + by, where a, b are constants, which has to be
maximised or minimized is called a linear objective function.
Constraints: The linear inequalities or inequations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x โฅ๏ 0, y โฅ0 are
called non-negative restrictions.
Optimization problem: A problem which seeks to maximise or minimise a linear
62
63
function (say of two variables x and y) subject to certain constraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems.
Feasible region: The common region determined by all the constraints including
non-negative constraints x, y ๏ of a linear programming problem is called the feasible
region (or solution region) for the problem.
Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the objective function is called an optimal solution.
IMPORTANT SOLVED PROBLEMS
Q1. A dietician wishes to mix together two kinds of foods X and Y in such a way that the
mixture contains at least 10 units of vitamin A, 12 units vitamin B and 8 units of vitamin C. The
vitamin contents on one kg. food is given below :
Food
Vitamin A
Vitamin B
Vitamin C
X
1
2
3
Y
2
2
1
One kg. of food X costs Rs. 16 and one kg. of food Y costs Rs. 20. Find the least cost of the
mixture which will produce a required diet?
Sol. Let x kg and y kg food of two kinds of foods X and Y to be mixed in a diet respectively.
The contents of one kg. food of each kind as given below:
Food
Vitamin A Vitamin B
Vitamin C
Cost
X
1
2
3
16
Y
Minimum
Requirement
2
2
1
20
10
12
8
The above L.P.P. is given as
Minimum, Z = 16x + 20 y
subject to the constraints
63
64
x + 2y โฅ10, 2x + 2y โฅ 12,
3x + y โฅ 8, x, y โฅ 0
L1 : x + 2y = 10
X
Y
L2 : x + y = 6
A
B
10
0
0
5
C
X
Y
6
0
L3 : 3x + y = 8
D
E
x
y
0
6
Corner points
A (10,0)
F (0, 8)
G (1, 5)
H (2,4)
2
2
F
0
8
Z = 16x + 20 y
160
160
116
112
Here the cost is minimum at H (2,4)
Since the region is unbounded therefore Rs. 112 may be or may not be the minimum value of C.
For this draw of inequality
16x + 20y < 112
i.e. 4x + 5y -< 28
64
65
L : 4x + 5 y = 28
x
y
7
0
2
4
Clearly open half plane has no common point with the feasible region so minimum value of Z is
Rs. 112.
Q2. An aero plane can carry a maximum of 200 passengers. A profit of Rs. 1000 is made on each
executive class ticket and a profit of Rs. 600 is made on each economy class ticket. The airline
reserves at least 20 seats for executive class. However at least 4 times as many passengers prefer
to travel by economy class than by the executive class. Determine how many tickets of each type
must be sold in order to maximize the profit for the airline. What is the maximum profit?
SOL. Let the number of executive class ticket = x
And the number of economy class tickets = y
Given, maximum capacity of passengers = 200
โด x + y โค 200
Atleast 20 seats of executive class are reserved.
โด x โฅ 20
Also atleast 4x seats of economy class are reserved
โด y โฅ 4x
Therefore, above L.P.P. is given as
Maximum P = 1000x + 600y \
subject to the constraints
x + y โค 200 ,
x โฅ 20,
y โฅ 4x or 4x โ y โค 0
x โฅ 0, y โฅ 0
L1 : x + y = 200
A
L2 : 4x + y = 0
B
C
D
65
66
X
Y
0
200
200
0
X
Y
0
0
50
200
L3 : x = 20
Corner Points
E (20, 80)
F ( 40, 160)
G (20, 180)
P = 1000x + 600y
68000
136000
128000
(Maximum)
โด here profit is maximum at F (40,160)
โด 40 tickets of executive class and 160 tickets of economy class to sold to get maximum profit
and maximum profit is Rs. 136000.
Q3. A factory manufactures two types of screws, A and B; each type requiring the use of two
machines an automatic and a hand operated. It takes 4 minutes on the automatic and 6 minutes
on hand operated machines to manufacture a package of screws A, while it takes 6 minutes on
automatic and 3 minutes on the hand operated machines to manufacture a package of screws B.
Each machine is available for at the most 4 hours on any day. The manufacturer can sell a
package of screws A at a profit Rs. 7 and screws B at a profit of Rs. 10. Assuming that he can
sell all the screws he manufactures, how many packages of each type should the factory owner
produce in a day in order to maximise his profit? Determine the maximum profit.
Sol. Let number of packages of screws A produced = x
And number of packages of screws B produced = y
66
67
The number of minutes for producing 1 unit of each item is given below:
Screw
Automatic
Machine
4
6
240
A
B
Time
available
Hand operated
Machine
6
3
240
Therefore, the above L.P.P. is given as
Maximise, P = 7x + 10 y subject to the constraints.
4x + 6y โค 240 ; 6x + 3y โค 240
i.e. 2x + 3y โค 120 : 2x + y โค80, x, yโฅ0
L1 ; 2x + 3y = 120
A
B
X
Y
60
0
Corner points
O (0,0)
C (40,0)
B (0,40)
E (30, 20)
0
40
L2 : 2x + y = 80
C
D
x
y
40
0
0
80
P = 7x + 10y
0
280
400
410
(maximum)
67
Profit
7
10
68
Here profit is maximum at E (30,20)
โด Number of packages of screws A = 30
Number of packages of screws B = 20
Maximum profit = Rs. 410.
Flow Chart
Step 1. Write the given informations in the tabulated form.
Step2. Form the L.P.P model of the problem.
Step3. Draw all the constraints by converting them in to equations.
Now we solve the L.P.P. by CORNER POINT METHOD which has the following steps
Step 1. Find the feasible region of the linear programming problem bounded by all the
constraints and determine its corner points (vertices) either by inspection or by solving the two
equations of the lines intersecting at that point.
Step 2. Evaluate the objective function Z = ax + by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.
Step 3. (i) When the feasible region is bounded, M and m are the maximum and minimum
values of Z.
(ii) In case, the feasible region is unbounded, we have:
Step 4. (a) M is the maximum value of Z, if the open half plane determined by
ax + by > M has no point in common with the feasible region. Otherwise, Z
has no maximum value.
(b) Similarly, m is the minimum value of Z, if the open half plane determined by ax + by < m has
no point in common with the feasible region. Otherwise, Z has no minimum value
ASSIGNMENTS
(i) LPP and its Mathematical Formulation
LEVEL I
1. A dietician has to develop a special diet using two foods P and Q. Each packet (containing 30
g) of food P contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of
68
69
vitamin A. Each packet of the same quantity of food Q contains 3 units of calcium, 20 units of
iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires at least 240 units of
calcium, at least 460 units of iron and at most 300 units of cholesterol. How many packets of
each food should be used to minimise the amount of vitamin A in the diet? What is the
minimum amount of vitamin A?
(ii) Graphical method of solving LPP (bounded and unbounded solutions)
LEVEL I
Solve the following Linear Programming Problems graphically:
1. Minimise Z = โ 3x + 4 y subject to x + 2y โค 8, 3x + 2y โค 12, x โฅ 0, y โฅ 0.
2. Maximise Z = 5x + 3y subject to 3x + 5y โค 15, 5x + 2y โค 10, x โฅ 0, y โฅ 0.
3. Minimise Z = 3x + 5y such that x + 3y โฅ 3, x + y โฅ 2, x, y โฅ 0.
(iii) Diet Problem
LEVEL II
1. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and
1,400 calories. Two foods X and Y are available at a cost of Rs. 4 and Rs. 3 per unit respectively.
One unit of the food X contains 200 units of vitamins, 1 unit of mineral and 40 calories, whereas
one unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what
combination of X and Y should be used to have least cost? Also find the least cost.
2. A dietician wishes to mix two types of foods in such a way that vitamin contents of the
mixture contain at least 8 units of vitamin A and 10 units of vitamin C. Food โIโ contains 2
units/kg of vitamin A and 1 unit/kg of vitamin C.Food โIIโ contains 1 unit/kg of vitamin A and 2
units/kg of vitamin C. It costs Rs 50 per kg to purchase Food โIโ and Rs 70 per kg to purchase
Food โIIโ. Formulate this problem as a linear programming problem to minimise the cost of such
a mixture. In what way a balanced and healthy diet is helpful in performing your day-to-day
activities
(iv) Manufacturing Problem
LEVEL II
1.A company manufactures two articles A and B. There are two departments through which
these articles are processed: (i) assembly and (ii) finishing departments. The maximum capacity
of the assembly department is 60 hours a week and that of the finishing department is 48 hours
a week. The production of each article A requires 4 hours in assembly and 2 hours in finishing
and that of each unit of B requires 2 hours in assembly and 4 hours in finishing. If the profit is
Rs. 6 for each unit of A and Rs. 8 for each unit of B, find the number of units of A and B to be
produced per week in order to have maximum profit.
2. A company sells two different produces A and B. The two products are produced in a common
production process which has a total capacity of 500 man hours. It takes 5 hours to produce a
unit of A and 3 hours to produce a unit of B. The demand in the market shows that the maximum
number of units of A that can be sold is 70 and that for B is 125. Profit on each unit of A is Rs.
20 and that on B is Rs. 15. How many units of A and B should be produced to maximize the
profit? Solve it graphically. What safety measures should be taken while working in a factory?
69
70
Q3.A toy company manufactures two types of dolls, A and B. Market tests and available
resources have indicated that the combined production level should not exceed 1200 dolls per
week and the demand for dolls of type B is at most half of that for dolls of type A. Further, the
production level of dolls of type A can exceed three times the production of dolls of other type
by at most 600 units. If the company makes profit of Rs 12 and Rs 16 per doll respectively on
dolls A and B, how many of each should be produced weekly in order to maximise the profit?
LEVEL III
1.A manufacture makes two types of cups, A and B. Three machines are required to manufacture
the cups and the time in minutes required by each is as given below:
Type of Cup
A
B
I
12
6
Machines
II
18
0
III
6
9
Each machine is available for a maximum period of 6 hours per day. If the profit on each cup A
is 75 paise, and on B it is 50 paise, show that the 15 cups of type A and 30 cups of type B should
be manufactured per day to get the maximum profit.
(v) Allocation Problem
LEVEL II
1. Ramesh wants to invest at most Rs. 70,000 in Bonds A and B. According to the rules, he has
to invest at least Rs. 10,000 in Bond A and at least Rs. 30,000 in Bond B. If the rate of interest
on bond A is 8 % per annum and the rate of interest on bond B is 10 % per annum , how much
money should he invest to earn maximum yearly income ? Find also his maximum yearly
income.
Q2 A merchant plans to sell two types of personal computers โ a desktop model and a portable
model that will cost Rs 25000 and Rs 40000 respectively. He estimates that the total monthly
demand of computers will not exceed 250 units. Determine the number of units of each type of
computers which the merchant should stock to get maximum profit if he does not want to invest
more than Rs 70 lakhs and if his profit on the desktop model is Rs 4500 and on portable model is
Rs 5000.
LEVEL III
1. An aeroplane can carry a maximum of 250 passengers. A profit of Rs 500 is made on each
executive class ticket and a profit of Rs 350 is made on each economy class ticket. The airline
reserves at least 25 seats for executive class. However, at least 3 times as many passengers prefer
to travel by economy class than by the executive class. Determine how many tickets of each type
must be sold in order to maximize the profit for the airline. What is the maximum profit?
Answers
(i) LPP and its Mathematical Formulation
LEVEL I
70
71
1. Z = 6x + 3y, 4x + y โฅ 80, x + 5y โฅ115, 3๐ฅ + 2๐ฆ โค 150 x, y โฅ0
(ii) Graphical method of solving LPP (bounded and unbounded solutions)
1. Minimum Z = โ 12 at (4, 0),
2. Maximum Z =
235
๏ฆ 20 45 ๏ถ
at ๏ง , ๏ท
19
๏จ 19 19 ๏ธ
๏ฆ3 1๏ถ
3. Minimum Z = 7 at ๏ง , ๏ท
๏จ2 2๏ธ
(iii) Diet Problem
LEVEL II
1. Least cost = Rs.110 at x = 5 and y = 30
2. Minimum cost = Rs.380 at x = 2 and y = 4
(iv) Manufacturing Problem
LEVEL II
1. Maximum profit is Rs. 120 when 12 units of A and 6 units of B are produced
2. For maximum profit, 25 units of product A and 125 units of product B are produced
and sold.
3. 800 dolls of type A and 400 dolls of type B; Maximum profit = Rs 16000
(v) Allocation Problem
LEVEL II
1. Maximum annual income = Rs. 6,200 on investment of Rs. 40,000 on Bond A and
Rs. 30,000 on Bond B.
Q2. 200 units of desktop model and 50 units of portable model;
Maximum profit = Rs 1150000.
LEVEL III
1. For maximum profit, 62 executive class tickets and 188 economy class ticket should be sold.
71
72
PROBABILITY:
INTRODUCTION:
Topic
Concepts
Probability
Degree of Importance
(i) Conditional Probability
***
(ii) Multiplication theorem on
probability
**
(iii) Independent events
***
(iv) Bayeโs Theorem,
Partition of a sample space
and theorem of total
probability
(v) Random Variables &
Probability distribution Mean
& Variance of Random
Variables
(vi) Bernaulliโs trails and
Binomial distribution
***
***
***
Reference from NCERT
Book Vol.II
Article 13.2 and 13.2.1
Solved Ex. 1 to 6
Ex, 13.1 Q.N.-1,5 to 15
Article 13.3
solved Ex. 8 & 9
Ex. 13.2 Q.N.-2,3,13,14, 16
Article 13.4
Solved Ex. 10 to 14
Ex 13.2 Q.N.-1,6,7,8,11
Article 13.5, 13.5.1, 13.5.2
Solved Ex. 15 to 21
Ex. 13.3 Q.N.-1 to 12
Misc. Ex. Q.N. 13 to 16
Articles 13.6, 13.6.1, 13.6.2
13.6.3
Solved Ex. 24 to 29
Ex 13.4 Q.No.-1,4 to 15
Articles 13.7, 13.7.1, 13.7.2
Solved Ex. 31 & 32
Ex. 13.5 Q.N.- 1 to 13
Concept Mapping:
๐ท(๐ฌโฉ๐ญ)
Conditional Probability: ๐ท(๐ฌ/๐ญ) = ๐ท(๐ญ) ,P(F)โ ๐
Multiplication Theorem: ๐(๐ธ โฉ ๐น) = ๐(๐ธ). ๐(๐น/๐ธ)
If E and F are independent events then ๐(๐ธ โฉ ๐น) = ๐(๐ธ). ๐(๐น) and vice versa
Bayes Theorem: If E1 ,E2 and E3 are three events of sample space S and
E1โช E2โช E3 = S & pairwise disjoint sets. A is any event
probability. Then
๐ท(๐ฌ )๐ท(๐จ/๐ฌ )
๐ท(๐ฌ๐ /๐จ) = ๐ท(๐ฌ )๐ท(๐จ/๐ฌ )+๐ท(๐ฌ๐ )๐ท(๐จ/๐ฌ๐ )+๐ท(๐ฌ )๐ท(๐จ/๐ฌ )
๐
๐
๐
๐
๐
of nonzero
๐
Probability Distribution: The probability distribution of a random variable X is the system of
numbers
X
:
x1
x2
x3
xn
...
P(X) :
p1
p2
p3
pn
โฆ
Where, pi> 0, โ๐๐=1 ๐๐ = 1, ๐ = 1,2, โฆ , ๐
Mean of a random variable X i.e.
E(X) = ๐ = โ๐๐=1 ๐ฅ๐ ๐๐ , ๐ = 1,2, โฆ , ๐
72
73
Variance of a random variable X i.e. ๐ 2 ๐ฅ = E(๐ 2 ) โ [E(X)]2
Standard Deviation: ๐๐ฅ = โ๐๐๐๐๐๐๐๐
Binomial Distribution: B (n, p)
P(X = r) = nCr ๐๐ ๐ ๐โ๐ , ๐ = 0, 1, โฆ , ๐ and q = 1-p, where p is the probability of success.
Solved Examples:
1.
A biased die is twice as likely to show an even number as an odd number. The die is
rolled three times. If occurrence of an even number is considered a success, then write the
probability distribution of number of successes. Also find the mean number of successes.
Which human value is violated in this case.
Solution:
1
1
2
2
P(odd number) =
P (even number) =
๏ฝ
๏ฝ
1๏ซ 2 3
1๏ซ 2 3
Here occurrence of an even number is considered a success. Let the number of success is
a random variable x and can take values 0, 1, 2 or 3.
The probability distribution of number of successes is as below:
1 1 1 1
P(x = 0)
= P (no success)
= P (FFF)
= ๏ด ๏ด ๏ฝ
3 3 3 27
๏ฆ 2 1 1๏ถ 6
P(x = 1)
= P (one success)
= P(SFF, FSF, FFS) = 3๏ง ๏ด ๏ด ๏ท ๏ฝ
๏จ 3 3 3 ๏ธ 27
๏ฆ 2 2 1 ๏ถ 12
P (x = 2)
= P (two success)
= P(SSF, SFS, FSS) = 3๏ง ๏ด ๏ด ๏ท ๏ฝ
๏จ 3 3 3 ๏ธ 27
๏ฆ2 2 2๏ถ 8
P (x = 3)
= P (three success) = P (SSS)
= ๏ง ๏ด ๏ด ๏ท๏ฝ
๏จ 3 3 3 ๏ธ 27
X = xi
0
1
P(x) = pi
1/27
6/27
Mean number of successes = ๏ฅ xi pi
2
12/27
3
8/27
1 ๏ถ ๏ฆ
6 ๏ถ ๏ฆ
12 ๏ถ ๏ฆ
8 ๏ถ 54
๏ฆ
๏ฝ2
= ๏ง 0 ๏ด ๏ท ๏ซ ๏ง1 ๏ด ๏ท ๏ซ ๏ง 2 ๏ด ๏ท ๏ซ ๏ง 3 ๏ด ๏ท ๏ฝ
27 ๏ธ ๏จ 27 ๏ธ ๏จ
27 ๏ธ ๏จ 27 ๏ธ 27
๏จ
Having unbiased is violated in this case.
Q.2
Probabilities of solving a specific problem independently by A and B are 1/2 and 1/3
respectively. If both try to solve the problem independently, find the probability that (i)
the problem is solved (ii) exactly one of them solves the problem.
Solution:
P(A) = 1/2 = prob. that A will solve the problem
P(B) = 1/3 = prob. that B will solve the problem
(i)
Probability that the problem is solved
=
1 - prob. that none of them solve the problem
๏ฆ 1 ๏ถ๏ฆ 1 ๏ถ
๏ฆ1 2๏ถ 2
1 ๏ญ P A .P B =
1 ๏ญ ๏ง1 ๏ญ ๏ท๏ง1 ๏ญ ๏ท ๏ฝ 1 ๏ญ ๏ง ๏ด ๏ท ๏ฝ
=
๏จ 2 ๏ธ๏จ 3 ๏ธ
๏จ2 3๏ธ 3
Probability that exactly one of them will solve the problem
๏จ๏ฉ ๏จ๏ฉ
(ii)
73
74
๏ฆ
๏ถ
P๏ง A B or A B ๏ท. ๏ฝ P( A) ๏ด P( B) ๏ซ P( A) ๏ด P( B)
๏จ
๏ธ
=
1 ๏ฆ 1๏ถ ๏ฆ 1๏ถ 1 ๏ฆ1 2๏ถ ๏ฆ1 1๏ถ 3 1
๏ฝ ๏ด ๏ง1 ๏ญ ๏ท ๏ซ ๏ง1 ๏ญ ๏ท ๏ด ๏ฝ ๏ง ๏ด ๏ท ๏ซ ๏ง ๏ด ๏ท ๏ฝ ๏ฝ
2 ๏จ 3๏ธ ๏จ 2๏ธ 3 ๏จ 2 3๏ธ ๏จ 2 3๏ธ 6 2
Q.3
Two cards are drawn simultaneously without replacement from a well shuffled pack of
52 cards. Find the mean and variance of the number of aces.
Solution:
Let x denote the number of aces in a draw of two cards.
x is a random variable which can assume the values 0, 1 and 2
48 ๏ด 47
188
48C 2
P ( x ๏ฝ 0) ๏ฝ P (no ace) ๏ฝ
๏ฝ 2 ๏ด1 ๏ฝ
52 ๏ด 51 221
52C 2
2 ๏ด1
P ( x ๏ฝ 1) ๏ฝ P (one ace and one non ๏ญ ace)
4C ๏ด 48C1 4 ๏ด 48 ๏ด 2 32
๏ฝ 1
๏ฝ
๏ฝ
52C 2
52 ๏ด 51
221
P ( x ๏ฝ 2) ๏ฝ P (two aces) ๏ฝ
4C 2
4๏ด3
1
๏ฝ
๏ฝ
52C 2 52 ๏ด 51 221
The probability distribution of x is
x or xi
P(x) = pi
Mean = E(x) = ๏ฅ xi pi
๏จ ๏ฉ
E x2
0
188/221
1
32/221
2
1/221
32 ๏ถ ๏ฆ
1 ๏ถ 2
๏ฆ 188 ๏ถ ๏ฆ
= ๏ง0๏ด
๏ท ๏ซ ๏ง1 ๏ด
๏ท ๏ซ ๏ง2๏ด
๏ท๏ฝ
221 ๏ธ ๏จ 221 ๏ธ ๏จ
221 ๏ธ 13
๏จ
32 ๏ถ ๏ฆ
1 ๏ถ 36
๏ฆ 188 ๏ถ ๏ฆ
๏ฝ ๏ฅ xi2 pi ๏ฝ ๏ง 0 ๏ด
๏ท ๏ซ ๏ง1 ๏ด
๏ท ๏ซ ๏ง4๏ด
๏ท๏ฝ
221 ๏ธ ๏จ 221 ๏ธ ๏จ
221 ๏ธ 221
๏จ
2
36 ๏ฆ 2 ๏ถ 400
๏ท๏ฝ
๏ญ ๏ง๏ง
221 ๏จ 13 ๏ท๏ธ 2873
Q.4
A family has 2 children. Find the probability that both are boys, if it is known that
(i) at least one of the children is a boy
(ii) the elder child is a boy
Solution:
S ๏ฝ ๏ปB1B2 , B1G2 , G1B2 , G1G2 ๏ฝ
(i)
at least one of the children is a boy
A = Both the children are boys ๏ปB1B2 ๏ฝ
B = At least one of the children is a boy ๏ฝ ๏ปB1B2 , B1G2 , G1B2 ๏ฝ
๏จ A ๏ B ๏ฉ ๏ฝ 14 ๏ฝ 1
๏ฆ A๏ถ
Required probability = P๏ง ๏ท ๏ฝ P
3
P( B)
3
๏จB๏ธ
4
๏จ ๏ฉ
Var ( x) ๏ฝ E x 2 ๏ญ ๏จE ๏จx ๏ฉ๏ฉ ๏ฝ
2
74
75
(ii)
The elder child is a boy
A = Both the children are boys = ๏ปB1B2 ๏ฝ
B = elder child is a boy = ๏ฝ ๏ปB1B2 , B1G2 ๏ฝ
1
๏จ
A ๏ B๏ฉ
1
๏ฆ A๏ถ
Required probability = P๏ง ๏ท ๏ฝ P
๏ฝ 4๏ฝ
2
P( B)
2
๏จB๏ธ
4
Q.5
Assume that the chances of a patient having a heart attack is 40%. It is also assumed that
a meditation and yoga course reduces the risk of heart attack by 30% and prescription of
certain drugs reduces his chances by 25%. At a time a patient can choose any one of the
two options with equal probabilities. It is given that after going through one of the two
options, the patient selected at random, suffers a heart attack. Find the probability that the
patient followed a course of meditation and yoga. In a student life state any one point
how yoga and meditation influence.
Solution:
Let E1 and E2 be events of selection of meditation and yoga and prescription of medicine
respectively.
Let A = event of having heart attack.
1
We have
P๏จE1 ๏ฉ ๏ฝ P๏จE 2 ๏ฉ ๏ฝ
2
๏ฆ A๏ถ ๏ฆ
30
28
๏ถ
P๏ง๏ง ๏ท๏ท ๏ฝ ๏ง 40 ๏ญ
๏ด 40 ๏ท% ๏ฝ
100
100
๏ธ
๏จ E1 ๏ธ ๏จ
๏ฆ A
P๏ง๏ง
๏จ E2
๏ถ ๏ฆ
25
30
๏ถ
๏ท๏ท ๏ฝ ๏ง 40 ๏ญ
๏ด 40 ๏ท% ๏ฝ
100
100
๏ธ
๏ธ ๏จ
๏ฆE ๏ถ
Required probability = P ๏ง 1 ๏ท
๏จ A๏ธ
๏ฆ A๏ถ
1 28
P๏จE1 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท
๏ด
E
28 14
1 ๏ธ
๏จ
2
100
๏ฝ
๏ฝ
๏ฝ
๏ฝ
๏ฆ A๏ถ
๏ฆ A ๏ถ 1 ๏ด 28 ๏ซ 1 ๏ด 30 58 29
P๏จE1 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท ๏ซ P๏จE 2 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท
๏จ E1 ๏ธ
๏จ E 2 ๏ธ 2 100 2 100
yoga and meditation improves our physical and mental health.
Q.6
An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck
drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively. One of the
insured persons meets with an accident. What is the probability that he is a scooter
driver?
Which mode of transport would you suggest to students and why?
Solution:
Let E1, E2 and E3 are the events of selection of a scooter driver, car driver and truck
driver respectively.
Let A = event that the insured person meets with an accident.
75
76
P๏จE1 ๏ฉ ๏ฝ
2000 1
๏ฝ
12000 6
P ๏จE 2 ๏ฉ ๏ฝ
P ๏จE 3 ๏ฉ ๏ฝ
4000 1
๏ฝ
12000 3
6000 1
๏ฝ
12000 2
๏ฆ A๏ถ
P๏ง๏ง ๏ท๏ท ๏ฝ 0.15
๏จ E3 ๏ธ
๏ฆ A๏ถ
P๏ง๏ง ๏ท๏ท ๏ฝ 0.01
๏จ E1 ๏ธ
๏ฆ A๏ถ
P๏ง๏ง ๏ท๏ท ๏ฝ 0.03
๏จ E2 ๏ธ
๏ฆE ๏ถ
Required probability = P ๏ง 1 ๏ท
๏จ A๏ธ
๏ฆ A๏ถ
1
P๏จE1 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท
๏ด 0.01
E
1 ๏ธ
๏จ
6
๏ฝ
๏ฝ
๏ฆ A ๏ถ 1 ๏ด 0.01 ๏ซ 1 ๏ด 0.03 ๏ซ 1 ๏ด 0.15
๏ฆ A๏ถ
๏ฆ A๏ถ
P๏จE1 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท ๏ซ P๏จE 2 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท ๏ซ P๏จE3 ๏ฉ ๏ด P๏ง๏ง ๏ท๏ท
3
2
๏จ E1 ๏ธ
๏จ E2 ๏ธ
๏จ E3 ๏ธ 6
0.01
0.01 1
๏ฝ
๏ฝ
0.01 ๏ซ 0.06 ๏ซ 0.45 0.52 52
Cycle should be suggested as it is good for (i) health (ii) no pollution (iii) saves energy
(no fuel).
๏ฝ
Practice Problem
Level-1
1.
2.
3.
4.
5.
6.
7.
๏ฆB๏ถ
If P(A) = 0.3, P(B) = 0.2 find P ๏ง ๏ท , if A and B are mutually exclusive events.
๏จ A๏ธ
A coin is tossed thrice and all the 8 outcomes are equally likely:
E: the first throw results in head
F: the last throw results in tail
Are the events independent?
Given P(A) = 1/4 , P(B) = 2/3 and P(AUB) = 3/4. Are the events independent?
If A and B are independent events, find P(B) if P(AUB) = 0.60 and P(A) = 0.35.
Two cards are drawn with replacement from a well shuffled pack of 52 cards. Find the
probability distribution of the number of spades.
4 defective apples are accidentally mixed with 16 good ones. Three apples are drawn at
random from the mixed lot. Find the probability distribution of the number of defective
apples.
A random variable X is specified by the following distribution:
X
2
3
4
P(X)
0.3
0.4
0.3
Find the mean and variance of distribution.
Level-2
1.
A dice is thrown twice and sum of numbers appearing is observed to be 6. What is the
conditional probability that the number 4 has appeared at least ones?
2.
The probability of A hitting a target is 3/7 and that of B hitting is 1/3. They both fire at
their target find the probability that:
(a) at least one of them will hit the target
76
77
(b) only one of them will hit the target
3.
A company has two plants to manufacture bicycles. The first plants manufactures 60% of
the bicycle and second plant 40%. Out of that 80% of the bicycles are rated of standard
quality at the first plant and 90% of the standard quality at the second plant. A bicycle is
picked up at random and found to be standard quality. Find the probability that it comes
from the second plant.
Level-3
1.
A class consists of 80 students, 25 of them are girls and 55 are boys. 10 of them rich and
remaining poor; 20 of them are fair complexioned. What is the probability that selecting a
fair complexioned rich girl.
2.
Two integers are selected from integers 1 to 11. If the sum is even, find the probability
that both numbers are odd.
3.
Given three identical boxes I, II and III, each containing two coins. In box I, both coins
are gold coins, in box II, both are silver coins and in the box III, there is one gold and one
silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold,
what is the probability that the other coin in the box is also of gold?
4.
A coin is biased so that the head is 3 times as likely to occur as a tail. If the coin is tossed
twice, find the probability distribution of the number of tails.
5.
The mean and Variance of a binomial distribution are 4/3 and 8/9 respectively. Find
P(X ๏ณ 1).
6.
A card is drawn from a pack 52 cards is lost. From the remaining cards of the pack, two
cards are drawn and are found to be both hearts. Find the probability of the lost card
being a heart.
77