Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Data Mining Tutorial
D. A. Dickey
NCSU
and Miami grad!
(before 1809)
What is it?
•
•
•
•
Large datasets
Fast methods
Not significance testing
Topics
– Trees (recursive splitting)
– Nearest Neighbor
– Neural Networks
– Clustering
– Association Analysis
Trees
•
•
•
•
•
•
•
A “divisive” method (splits)
Start with “root node” – all in one group
Get splitting rules
Response often binary
Result is a “tree”
Example: Loan Defaults
Example: Framingham Heart Study
Recursive Splitting
Pr{default} =0.007
Pr{default} =0.012
Pr{default} =0.006
X1=Debt
To
Income
Ratio
Pr{default} =0.0001
Pr{default} =0.003
No default
Default
X2 = Age
Some Actual Data
• Framingham Heart
Study
• First Stage Coronary
Heart Disease
– P{CHD} = Function of:
• Age - no drug yet!
• Cholesterol
• Systolic BP
Import
Example of a “tree”
All 1615 patients
Split # 1: Age
Systolic BP
“terminal node”
How to make splits?
• Which variable to use?
• Where to split?
– Cholesterol > ____
– Systolic BP > _____
• Goal: Pure “leaves” or “terminal nodes”
• Ideal split: Everyone with BP>x has
problems, nobody with BP<x has
problems
Where to Split?
• First review Chi-square tests
• Contingency tables
Heart Disease
No
Yes
Low
BP
High
BP
Heart Disease
No
Yes
95
5
100
75
25
55
45
100
75
25
DEPENDENT
INDEPENDENT
c2 Test Statistic
• Expect 100(150/200)=75 in upper left if
independent (etc. e.g. 100(50/200)=25)
Heart Disease
No
Yes
Low
BP
High
BP
(observed exp ected ) 2
c allcells
exp ected
2
95
(75)
55
(75)
5
(25)
45
(25)
100
150
50
200
100
WHERE IS HIGH BP CUTOFF???
2(400/75)+
2(400/25) =
42.67
Compare to
Tables –
Significant!
Measuring “Worth” of a Split
• P-value is probability of Chi-square as
great as that observed if independence is
true. (Pr {c2>42.67} is 6.4E-11)
• P-values all too small.
• Logworth = -log10(p-value) = 10.19
• Best Chi-square max logworth.
Logworth for Age Splits
Age 47 maximizes logworth
How to make splits?
• Which variable to use?
• Where to split?
– Cholesterol > ____
– Systolic BP > _____
• Idea – Pick BP cutoff to minimize p-value
for c2
• What does “signifiance” mean now?
Multiple testing
• 50 different BPs in data, 49 ways to split
• Sunday football highlights always look
good!
• If he shoots enough baskets, even 95%
free throw shooter will miss.
• Jury trial analogy
• Tried 49 splits, each has 5% chance of
declaring significance even if there’s no
relationship.
Multiple testing
a=
Pr{ falsely reject hypothesis 2}
a=
Pr{ falsely reject hypothesis 1}
Pr{ falsely reject one or the other} < 2a
Desired: 0.05 probabilty or less
Solution: use a = 0.05/2
Or – compare 2(p-value) to 0.05
Multiple testing
•
•
•
•
•
•
50 different BPs in data, m=49 ways to split
Multiply p-value by 49
Bonferroni – original idea
Kass – apply to data mining (trees)
Stop splitting if minimum p-value is large.
For m splits, logworth becomes
-log10(m*p-value)
Other Split Evaluations
• Gini Diversity Index
– { A A A A B A B B C B}
– Pick 2, Pr{different} = 1-Pr{AA}-Pr{BB}-Pr{CC}
• 1-[10+6+0]/45=29/45=0.64
– { AA B C B AA B C C }
• 1-[6+3+3]/45 = 33/45 = 0.73 MORE DIVERSE, LESS PURE
• Shannon Entropy
– Larger more diverse (less pure)
–
-Si pi log2(pi)
{0.5, 0.4, 0.1} 1.36
{0.4, 0.2, 0.3} 1.51
(more diverse)
Goals
• Split if diversity in parent “node” > summed
diversities in child nodes
• Observations should be
– Homogeneous (not diverse) within leaves
– Different between leaves
– Leaves should be diverse
• Framingham tree used Gini for splits
Cross validation
• Traditional stats – small dataset, need all
observations to estimate parameters of
interest.
• Data mining – loads of data, can afford
“holdout sample”
• Variation: n-fold cross validation
– Randomly divide data into n sets
– Estimate on n-1, validate on 1
– Repeat n times, using each set as holdout.
Pruning
• Grow bushy tree on the “fit data”
• Classify holdout data
• Likely farthest out branches do not
improve, possibly hurt fit on holdout data
• Prune non-helpful branches.
• What is “helpful”? What is good
discriminator criterion?
Goals
• Want diversity in parent “node” > summed
diversities in child nodes
• Goal is to reduce diversity within leaves
• Goal is to maximize differences between
leaves
• Use same evaluation criteria as for splits
• Costs (profits) may enter the picture for
splitting or evaluation.
Accounting for Costs
• Pardon me (sir, ma’am) can you spare
some change?
• Say “sir” to male +$2.00
• Say “ma’am” to female +$5.00
• Say “sir” to female -$1.00 (balm for
slapped face)
• Say “ma’am” to male -$10.00 (nose splint)
Including Probabilities
Leaf has Pr(M)=.7, Pr(F)=.3.
You say:
M
F
True
Gender
M
0.7 (2)
0.7 (-10)
0.3 (5)
F
Expected profit is 2(0.7)-1(0.3) = $1.10 if I say “sir”
Expected profit is -7+1.5 = -$5.50 (a loss) if I say “Ma’am”
Weight leaf profits by leaf size (# obsns.) and sum
Prune (and split) to maximize profits.
Additional Ideas
• Forests – Draw samples with replacement
(bootstrap) and grow multiple trees.
• Random Forests – Randomly sample the
“features” (predictors) and build multiple
trees.
• Classify new point in each tree then
average the probabilities, or take a
plurality vote from the trees
• “Bagging” – Bootstrap aggregation
• “Boosting” – Similar, iteratively reweights points
that were misclassified to produce sequence of
more accurate trees.
* Lift Chart
- Go from leaf of most
to least response.
- Lift is cumulative
proportion responding.
Regression Trees
• Continuous response (not just class)
• Predicted response constant in regions
Predict 80
Predict 50
X2
Predict
130
Predict 100
X1
Predict
20
• Predict Pi in cell i.
• Yij jth response in cell i.
• Split to minimize Si Sj (Yij-Pi)2
Predict 80
Predict 50
Predict
130
Predict 100
Predict
20
• Predict Pi in cell i.
• Yij jth response in cell i.
• Split to minimize Si Sj (Yij-Pi)2
Logistic Regression
•
•
•
•
“Trees” seem to be main tool.
Logistic – another classifier
Older – “tried & true” method
Predict probability of response from input
variables (“Features”)
• Linear regression gives infinite range of
predictions
• 0 < probability < 1 so not linear regression.
• Logistic idea: Map p in (0,1) to L in whole
real line
• Use L = ln(p/(1-p))
• Model L as linear in temperature
• Predicted L = a + b(temperature)
• Given temperature X, compute a+bX then p
= eL/(1+eL)
• p(i) = ea+bXi/(1+ea+bXi)
• Write p(i) if response, 1-p(i) if not
• Multiply all n of these together, find a,b to
maximize
Example: Ignition
• Flame exposure time = X
• Ignited Y=1, did not ignite Y=0
– Y=0, X= 3, 5, 9 10 ,
13,
16
– Y=1, X =
11, 12 14, 15, 17, 25, 30
• Q=(1-p)(1-p)(1-p)(1-p)pp(1-p)pp(1-p)ppp
• P’s all different p=f(exposure)
• Find a,b to maximize Q(a,b)
Generate Q for array of (a,b) values
DATA LIKELIHOOD;
ARRAY Y(14) Y1-Y14; ARRAY X(14) X1-X14;
DO I=1 TO 14; INPUT X(I) y(I) @@; END;
DO A = -3 TO -2 BY .025;
DO B = 0.2 TO 0.3 BY .0025;
Q=1;
DO i=1 TO 14;
L=A+B*X(i); P=EXP(L)/(1+EXP(L));
IF Y(i)=1 THEN Q=Q*P; ELSE Q=Q*(1-P);
END; IF Q<0.0006 THEN Q=0.0006; OUTPUT; END;END;
CARDS;
3 0 5 0 7 1 9 0 10 0 11 1 12 1 13 0 14 1 15 1 16 0 17 1
25 1 30 1
;
Likelihood function (Q)
-2.6
0.23
IGNITION DATA
The LOGISTIC Procedure
Analysis of Maximum Likelihood Estimates
Parameter
Intercept
TIME
DF
1
1
Estimate
-2.5879
0.2346
Standard
Error
1.8469
0.1502
Wald
Chi-Square
1.9633
2.4388
Pr > ChiSq
0.1612
0.1184
Association of Predicted Probabilities and Observed Responses
Percent Concordant
Percent Discordant
Percent Tied
Pairs
79.2
20.8
0.0
48
Somers' D
Gamma
Tau-a
c
0.583
0.583
0.308
0.792
4 right,
1 wrong
5 right,
4 wrong
Example: Framingham
• X=age
• Y=1 if heart trouble, 0 otherwise
Framingham
The LOGISTIC Procedure
Analysis of Maximum Likelihood Estimates
Parameter
DF
Intercept
age
1
1
Standard
Wald
Estimate
Error Chi-Square
-5.4639
0.0630
0.5563
0.0110
96.4711
32.6152
Pr>ChiSq
<.0001
<.0001
Example:
Shuttle Missions
•
•
•
•
•
O-rings failed in Challenger disaster
Low temperature
Prior flights “erosion” and “blowby” in O-rings
Feature: Temperature at liftoff
Target: problem (1) - erosion or blowby vs. no
problem (0)
Neural Networks
• Very flexible functions
• “Hidden Layers”
• “Multilayer Perceptron”
output
inputs
Logistic function of
Logistic functions
Of data
Arrows represent linear
combinations of “basis
functions,” e.g. logistics
b1
Example:
Y = a + b1 p1 + b2 p2 + b3 p3
Y = 4 + p1+ 2 p2 - 4 p3
• Should always use holdout sample
• Perturb coefficients to optimize fit (fit data)
– Nonlinear search algorithms
• Eliminate unnecessary arrows using
holdout data.
• Other basis sets
– Radial Basis Functions
– Just normal densities (bell shaped) with
adjustable means and variances.
Terms
•
•
•
•
•
•
•
Train: estimate coefficients
Bias: intercept a in Neural Nets
Weights: coefficients b
Radial Basis Function: Normal density
Score: Predict (usually Y from new Xs)
Activation Function: transformation to target
Supervised Learning: Training data has
response.
Hidden Layer
L1 = -1.87 - .27*Age – 0.20*SBP22
H11=exp(L1)/(1+exp(L1))
L2 = -20.76 -21.38*H11
Pr{first_chd} = exp(L2)/(1+exp(L2))
“Activation Function”
Demo (optional)
• Compare several methods using SAS
Enterprise Miner
– Decision Tree
– Nearest Neighbor
– Neural Network
Unsupervised Learning
• We have the “features” (predictors)
• We do NOT have the response even on a
training data set (UNsupervised)
• Clustering
– Agglomerative
• Start with each point separated
– Divisive
• Start with all points in one cluster then spilt
EM PROC FASTCLUS
• Step 1 – find “seeds” as separated as
possible
• Step 2 – cluster points to nearest seed
– Drift: As points are added, change seed
(centroid) to average of each coordinate
– Alternatively: Make full pass then recompute
seed and iterate.
Clusters as Created
As Clustered
Cubic Clustering Criterion
(to decide # of Clusters)
• Divide random scatter of (X,Y) points into
4 quadrants
• Pooled within cluster variation much less
than overall variation
• Large variance reduction
• Big R-square despite no real clusters
• CCC compares random scatter R-square
to what you got to decide #clusters
• 3 clusters for “macaroni” data.
Association Analysis
• Market basket analysis
– What they’re doing when they scan your “VIP”
card at the grocery
– People who buy diapers tend to also buy
_________ (beer?)
– Just a matter of accounting but with new
terminology (of course )
– Examples from SAS Appl. DM Techniques, by
Sue Walsh:
Termnilogy
•
•
•
•
•
•
Baskets: ABC ACD BCD ADE BCE
Rule Support
Confidence
X=>Y Pr{X and Y} Pr{Y|X}
A=>D
2/5
2/3
C=>A
2/5
2/4
B&C=>D
1/5
1/3
Don’t be Fooled!
• Lift = Confidence /Expected Confidence if Independent
Checking->
Saving V
No
(1500)
Yes
(8500)
(10000)
No
500
3500
4000
Yes
1000
5000
6000
SVG=>CHKG Expect 8500/10000 = 85% if independent
Observed Confidence is 5000/6000 = 83%
Lift = 83/85 < 1.
Savings account holders actually LESS likely than others to
have checking account !!!
Summary
• Data mining – a set of fast stat methods for
large data sets
• Some new ideas, many old or extensions of old
• Some methods:
– Decision Trees
– Nearest Neighbor
– Neural Nets
– Clustering
– Association