Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Calculus AB Section 5/8 – 6/3 Review Worksheet answers Find the general solution 1. dy = 6x2 -8x +3 dx Since the right side is all in terms of x, y = 6 x 2 8 x 3 dx y ln x C Separating variables by cross-multiplication, 3y2∙dy = 16x∙dx y ln x ln C y ln Cx y = (ln|Cx|)2 Taking the anti-derivative of both sides, 2 3 y dy 16 x dx y3 = 8x2 + C 7. y = 6 13 x 3 8 12 x 2 3 x1 C y = 2x3 - 4x2 + 3x + C dy 2. = cos(2x) dx Since the right side is all in terms of x, y = cos( 2 x) dx u = 2x du = 2dx ½ du = dx y = cos(u ) 12 du y = 1 2 cos(u ) du y = ½ sin(u) + C y = ½ sin(2x) + C dy 2 = dx x Since the right side is all in terms of x, 2 y = dx x 1 y = 2 dx x y = 2∙ln|x| + C y = ln|x2| + C y = ln|x2| + ln|C| y = ln|C∙x2| 3. 4. 16 x dy = dx 3y 2 5. dy y = dx sec x Cross-multiplying, sec x dy y dx Dividing to separate the variables, 1 1 dy dx y sec 1 dy cos x dx y Taking the anti-derivative of both sides, 1 y dy cos dx ln y = sin x + C y = e sin x C = C e sin x 6. dy 2 y = dx x Cross-multiplying, x dy 2 y dx Dividing to separate the variables, 1 1 dy dx x 2 y Taking the anti-derivative of both sides, 1 1 2 y dy x dx dy x = dx y Separating variables by cross-multiplication, y∙dy = -x∙dx Taking the anti-derivative of both sides, y dy x dx ½ y2 = -½ x2 + C y2 = -x2 + C x2 + y2 = C 8. dy = 2x 1 y2 dx Separating variables by dividing, 1 dy 2 x dx 1 y2 Taking the anti-derivative of both sides, 1 1 y 2 dy 2 x dx arcsin(y) = x2 + C y = sin(x2+C) Identify a solution of the differential equation. 9. Differential equation: y’ = y”∙x + 1 Possible solutions: A. y = x3 B. y = 2x C. y = x2 + x Calculus AB Section 5/8 – 6/3 Review Worksheet answers 3 A. y = x y’ = 3x2 y” = 6x y’ = y”∙x + 1 3x2 ? 6x∙x + 1 3x2 ? 6x2 + 1 -3x2 ? 1 x2 ? -1/3 Never true B. y = 2x y’ = 2 y” = 0 y’ = y”∙x + 1 2 ? 0∙x + 1 2 ? 1 Never true 2 C. y = x + x y’ = 2x + 1 y” = 2 y’ = y”∙x + 1 2x+1 ? 2∙x + 1 2x+1 ? 2x + 1 Always true C is the only solution of the three. 10. Differential equation: y + y” = 0 Possible solutions: A. y = sinx B. y = e-x C. y = x4 A. y = sinx y’ = cosx y” = -sinx y + y” = 0 sinx + -sinx ? 0 0 ? 0 Always true B. y = e-x y’ = - e-x y” = e-x y + y” = 0 e-x + e-x ? 0 2e-x ? 0 e-x ? 0 Never true C. y = x4 y’ = 4x3 y” = 12x2 y + y” = 0 x4 + 12x2 ? 0 x2(x2 + 12) ? 0 Only sometimes true (when x = 0) A is the only solution of the three. 11. Differential equation: y” = 4∙y Possible solutions: A. y = 2x2 B. y = e-2x C. y = sinh(2x) A. y = 2x2 y’ = 4x y” = 4 y” = 4∙y 4 ? 4∙2x2 Only sometimes true (when x = 22 ). B. y = e-2x y’ = -2e-2x y” = 4e-2x y” = 4∙y 4e-2x ? 4 ∙ e-x Always true. C. y = sinh(2x) y’ = 2cosh(2x) y” = 4sinh(2x) y’ = 4∙y 4sinh(2x) ? 4 ∙ sinh(2x) Always true. B and C are both solutions. 12. Differential equation: y = y(4) Possible solutions: A. y = sin x B. y = e-x C. y = ln(x) A. y = sin x y’ = cosx y” = -sinx y’’’ = -cos x y(4) = sin x y = y(4) sin x ? sin x Always true B. y = e-x y’ = -e-x y” = e-x y’’’ = -e-x y(4) = e-x y = y(4) -x e ? e-x Always true C. y = ln(x) y’ = 1x = x-1 y” = -x-2 y’’’ = 2x-3 y(4) = -6x-4 y = y(4) ln(x) ? -6x-4 Never true. A and B are both solutions. Calculus AB Section 5/8 – 6/3 Review Worksheet answers Find the derivative 13. y = sinh(3x) dy = cosh(3x)∙3 dx = 3cosh(3x) cosh x 1 (cosh x 1)2 1 = cosh x 1 22. I = Find the anti-derivative. 14. y = x2∙sinhx 18. I = (2 x sec h x) dx 2 dy = x2∙coshx + sinhx∙2x dx = x2∙coshx + 2x∙sinhx 15. y = ln(cosh x) dy 1 d (cosh x) = dx cosh x dx 1 sinh x = cosh x sinh x = cosh x = tanh x = x2 – tanhx + C 19. I = 6 cosh(2 x) dx u = 2x du = ½ dx 6cosh(u) dx 3 cosh x dx 1 2 u = sinh x du = coshx∙dx sinh x 17. y = cosh x1 dy = dx 1 5 = sinh x dx cosh x u = cosh x du = sinhx dx 1 2 I u du 2 u C 5 C cosh x sinh x 1 dx 1 sinh x 1 cosh x dx u = sinhx + 1 du = coshx∙dx I = 1 = -cosh + C x I 2u 2 C sinh x 21. I = = -cosh(u) + C = -cosh x 1 + C 1 du 15 u 5 C cosh x 1 cosh x sinh x sinh x 2 cosh x 1 cosh 2 x cosh x sinh 2 x = (cosh x 1)2 cosh x cosh 2 x sinh 2 x = (cosh x 1)2 4 = sinh( u) du 1 4 u I = sinh( u )( du ) cosh x 2 sinh x dx 20. I = sinh x cosh x dx dy d (tanh x) = etanh x ∙ dx dx d (tanh x) = etanh x ∙ dx tanh x =e ∙ sech2x u = x-1 du = -1∙x-2∙dx -du = x-2∙dx 23. I = 3sinh x C 16. y = etanh x sinh 1x dx x2 = sinh( x 1 ) x 2 dx = 1 u du = ln | u | + C = ln(sinh x + 1) + C 2 cosh x C