Download STA 348 Introduction to Stochastic Processes Lecture 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
STA 348
Introduction to
Stochastic Processes
Lecture 2
1
Example

n# points are randomly drawn on a circle.
What is the probability that all points lie in a
semi-circle?
2
Random Variables

A random variable (RV) X is function from
sample space to real numbers X : S  


In other words, for any sample point Ei  S the
random variable assigns a number X  Ei   
E.g. X = # of heads in 2 coin flips
Sample space (S)
E1   H , H  E2   H , T 
E3  T , H  E4  T , T 

X
Values of random variable X
X  E1   2 X  E2   1
X  E3   1 X  E4   0
Describe events using RV’s indirectly, as
 x  all sample points Ei , such that X  Ei   x
3
Discrete RV’s

RV X is discrete, if it assumes finite {x1,...,xn}
or countably infinite {x1,x2,...} # of values.
S
 Discrete RV’s partition
X  x 
2
sample space into countable
number of events


 X  x1

Probability mass function (pmf)
p  x   P  X  x  x, so that: 0  p ( x)  1 &  x p  x   1
Cumulative distribution function (cdf)
F  x   P  X  x  x,
F ( x)  0
 xlim

F ( x) non-decreasing & 
F ( x)  1
 xlim

4
Common Discrete RV’s

Bernoulli: p(1)  p & p(0)  1  p  q, 0  p  1


Outcome is success (X=1) , or failure (X=0)
n x
n x
Binomial: p  x     p 1  p  , 0  x  n
 x

# of successes in n indep. Bernoulli trials
x 1

Geometric: p ( x)  pq , for x  1


# trials till 1st success in series of Bernoulli trials
 x 
Poisson: p ( x)  e , for x  0 with   0
x!

# successes in some interval, with success rate λ
5
Continuous RV’s


Continuous RV has continuous cdf F(x)
Probability density function (pdf) for cont. RV
dF  x 
f  x 
 F '  x  , x where derivative exists
dx

Properties of pdf’s:

f  x   0, x  

f  x  dx  1



P  X  B    f  x  dx, for every B  

B
6
Common Continuous RV’s



 b  a 1 , a  x  b
f  x  
otherwise
 0,
Uniform:
Exponential:
Gamma:


 e   x ,
x0
f  x  
otherwise
 0,
 e   x ( x) 1 / ( ),
x0
f  x  
0,
otherwise

( )   x 1e  x dx,
0
& (n)  (n  1)!
2

1
  x    
exp 
 Normal: f  x  
, x  
2
2
2 


7
Expectations

Expected value of RV X:




x
Continuous: E  X  
x  p  x



x  f  x  dx
Expected value of function g(·) of RV X:



Discrete: E  X  
Discrete: E  g  X     x g  x   p  x 
Continuous: E  g ( X ) 



g ( x)  f ( x)dx
2
2
Var
(
X
)

E
(
X
)

[
E
(
X
)]
Variance of RV X:
8
Example

For discrete, non-negative RV X, show that:
E ( X )   x1 P  X  x    x 0 P  X  x 
9
Example

For continuous, non-negative RV X, show that:

E ( X )   P  X  x  dx
0
10
Joint Distributions

For 2 discrete RV’s X,Y their joint pmf is
p  x , y   P  X  x, Y  y 


Marginal pmf of X: p X  x    y p  x, y 
For 2 continuous RV’s X,Y their joint pdf is
f  x, y  such that P  X  A, Y  B   
B

A
f ( x, y ) dxdy



Marginal pdf of X: f X  x    f ( x, y )dy
RV’s X,Y are independent iff:
P  X  a, Y  b  
 p  x, y   p X ( x) pY ( y )

P  X  a  P (Y  b)
 f  x, y   f X ( x) fY ( y )
11
Expectations & Covariances

Properties of expectations:



Linearity: E  g ( X )  f (Y )  c   E[ g ( X )]  E[ f (Y )]  c
For indep. X, Y: E  g ( X )  f (Y )   E[ g ( X )]  E[ f (Y )]
Covariance: Cov( X , Y )  E ( XY )  E ( X ) E (Y )





Cov( X , X )  Var ( X )
X,Y indep. ⇒ Cov(X,Y) =0, but NOT vice-versa
Cov( a  X  b, c  Y  d )  a  c  Cov( X , Y )
Cov( i X i ,  j Y j )   i  j Cov( X i , Y j )
Var ( i X i )   i Var ( X i )  2 i  j i Cov( X i ,X j )
12
Related documents