Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Inverse of Transcendental Functions 1- Inverse of Trigonometric Functions 2- Inverse of Exponential Functions 3- Inverse of Hyperbolic Functions 1- Inverse of Trigonometric Functions Since the trigonometric functions are not one-to-one, so they don’t have inverse functions. However, if we restrict their domains, then we may obtain one-to-one functions that have the same values as the trigonometric functions and that have inverse over these restricted domains. For example, the function y  sin x is not one –to-one on its natural domain R. However, when the domain is restricted to the interval –π/2 to π/2, it becomes one-to-one. y Graph of y  sin x 1 y x 2 3 / 2   / 2  /2  1 1 x  /2  / 2 1 1 y y  sin x  /2 x 1 1  / 2 3 / 2 2 Important Rules * 1 y  sin x  sin y  x  1  * sin sin x  x , if  1  x  1 * sin 1 sin x   x , if   2 x   2 Example Find the domain of   f  x   sin 1 x 2  1 Solution D :  1  x2  1  1  0  x2  2 D:  2  x  2 y Graph of y  cos x 1 y 2 3 / 2   / 2  /2  3 / 2 1 1  /2  x 1 1 y  cos x y   /2 x 1 1 2 x Important Rules * 1 y  cos x  cos y  x  1  * cos cos x  x , if  1  x  1 * cos 1  cos x   x , if 0  x   y Graph of y  tan x x 3 / 2 y  /2  / 2 x 1 y  tan x y  /2 x  / 2   / 2  /2  3 / 2 Important Rules * 1 y  tan x  tan y  x  1  * tan tan x  x , if    x   * tan 1  tan x   x , tan    1  2 if   2 x   2 tan     1  2 Example 1  1  lim tan   x2  x2 Evaluate Solution x2  1   x2 1   lim tan    x2  x2 2 1  Notes sin x   sin x  1 cos x   cos x  1 tan x   tan x  1 sin 1 1/ 2   / 6 1 1 1  sin x  1 1   csc x sin x 1 1   sec x cos x 1 1   cot x tan x  cos x   tan x  cos tan 1 1   / 4 1   3/2   /6 Important Rules * * * 1 1 1/ x  1 1 1/ x  1 1 1/ x  csc x  sin sec x  cos cot x  tan 1 Proof csc x  sin 1 1/ x  y  csc x 1 1 1    sin y x csc y  x  csc y  sin 1/ x   sin sin y  1 1 y  csc x  sin 1/ x  1 1 Example Evaluate the given inverse function i ) sec 1  3 ii ) cot 1  2.474 Solution i ) sec 1  3  cos 1  1     1.910633236  3 1  ii ) cot  2.474   tan    0.3840267299  2.474  1 1  2- Inverse Exponential Functions x Every exponential function of the form a is a one-to-one function. It therefore has an inverse function, which is called the logarithmic function with base a and is denoted by log a x . y ax log a x 1 1 Domain: (0, ) x Range: R  (, ) The Natural Logarithmic Function The logarithm with base e is called the natural logarithm and has a special notation loge x  ln x y  ln x y e x y 1 x 1 Domaim : (0, ) Rnge : R Basic Properties of Natural Logarithmic Function ln e  x x e lnx y   ln x  ln y ln x x lnx / y   ln x  ln y    r ln x ln x  ln 0   r ln   Example Solve the following equations for x a) e 53 x  10   5  3x  ln 10  e  e5  ln x 2 1 x 2  1  e 5 x  e 1 2 1 x   5  ln10   0.8991 3  b ) ln x  1  5 Solution ln e 53x  ln 10   2 5 x  e  1  12.141382. 5 Example Sketch the function f  x   ln  x  2   1 Solution y y x y x=2 x x 3- Inverse Hyperbolic Functions The hyperbolic functions sinh x is one-to-one functions 1 and so they have inverse functions denoted by sinh x   1) sinh 1 x  ln x  x 2  1 , 1  x   2) cosh x  ln x  x  1 , x  1 1 x 3) tanh x  ln , 1 x 1 2 1  x  1 1   sinh x  ln x  x  1 , Proof (1) 2 e e  x  sinh y  x  2 y y  sinh x 1 x R y  e  e  2x  e  2x  e  0 y e  y 2 y  2 xe   1  0 y 2x  4x  4 e   2 2 y y y e  x  x 1 y   2 y  ln  x  x  1    2 Proof (3) tanh y  tanh x 1 1 1 x x  ln , 1 x  x  tanh y 1 x 1 x  e e e y e y  x e y e  e 1  x   e 1  x  y y    e y 1  x  1  x  y  e y  xe y y y e y e y e y  xe   1  x   1  x   e y 2  y  ln    1  x   1  x   y Important Rules 1 sec h x  cosh 1 csc h x  sinh 1 1 1 coth x  tanh 1 / x  1 / x  1 1 / x