Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
9.3 Further Identities • Double-Number Identities – E.g. cos 2A = cos(A + A) = cos A cos A – sin A sin A = cos² A – sin² A – Other forms for cos 2A are obtained by substituting either cos² A = 1 – sin² A or sin² A = 1 – cos² A to get cos 2A = 1 – 2 sin² A or cos 2A = 2 cos² A – 1. Copyright © 2011 Pearson Education, Inc. Slide 9.3-1 9.3 Double-Number Identities Double-Number Identities cos 2 A  cos A  sin A cos 2 A  1  2 sin A cos 2 A  2 cos A  1 sin 2 A  2 sin A cos A 2 2 2 2 2 tan A tan 2 A  1 tan 2 A Copyright © 2011 Pearson Education, Inc. Slide 9.3-2 9.3 Finding Function Values of 2 Example Given cos   53 and sin  < 0, find sin 2, cos 2, and tan 2. Solution To find sin 2, we must find sin . sin 2   cos 2   1 2 3 4  sin      1  sin    5 5 sin 2  2 sin  cos  2 Choose the negative square root since sin  < 0. 4  3  24  sin 2  2      25  5  5  Copyright © 2011 Pearson Education, Inc. Slide 9.3-3 9.3 Finding Function Values of 2 cos 2  cos   sin  2 2 2 2 3  4 7          25 5  5 2 tan  sin   54 4 tan 2  , where tan   3  2 1  tan  cos  3 5 2 43  24   or 2 7 1   43  sin 2  24 24 25 tan 2   7  cos 2  25 7 Copyright © 2011 Pearson Education, Inc. Slide 9.3-4 9.3 Simplifying Expressions Using Double-Number Identities Example Simplify each expression. (a) cos² 7x – sin² 7x (b) sin 15° cos 15° Solution (a) cos 2A = cos² A – sin² A. Substituting 7x in for A gives cos² 7x – sin² 7x = cos 2(7x) = cos 14x. (b) Apply sin 2A = 2 sin A cos A directly. 1   sin 15 cos 15  (2) sin 15 cos15 2 1 1 1    sin( 2  15 )  sin 30  2 2 4 Copyright © 2011 Pearson Education, Inc. Slide 9.3-5 9.3 Product-to-Sum Identities • Product-to-sum identities are used in calculus to find integrals of functions that are products of trigonometric functions. • Adding identities for cos(A + B) and cos(A – B) gives cos( A  B)  cos A cos B  sin A sin B cos( A  B)  cos A cos B  sin A sin B cos( A  B)  cos( A  B)  2 cos A cos B 1 cos A cos B  [cos( A  B)  cos( A  B)]. 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-6 9.3 Product-to-Sum Identities • Similarly, subtracting and adding the sum and difference identities of sine and cosine, we may derive the identities in the following table. Product-to-Sum Identities cos A cos B  12 [cos( A  B)  cos( A  B)] sin A sin B  12 [cos( A  B)  cos( A  B)] sin A cos B  12 [sin( A  B)  sin( A  B)] cos A sin B  12 [sin( A  B)  sin( A  B)] Copyright © 2011 Pearson Education, Inc. Slide 9.3-7 9.3 Using a Product-to-Sum Identity Example Rewrite cos 2 sin  as either the sum or difference of two functions. Solution By the identity for cos A sin A, with 2 = A and  = B, 1 cos 2 sin   [sin( 2   )  sin( 2   )] 2 1 1  sin 3  sin  . 2 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-8 9.3 Sum-to-Product Identities • From the previous identities, we can derive another group of identities that are used to rewrite sums of trigonometric functions as products. Sum-to-Product Identities sin A  sin B  2 sin  A2 B  cos  A2 B  sin A  sin B  2 cos  A2 B sin  A2 B  cos A  cos B  2 cos  A2 B  cos  A2 B  cos A  cos B  2 sin  A2 B sin  A2 B  Copyright © 2011 Pearson Education, Inc. Slide 9.3-9 9.3 Using a Sum-to-Product Identity Example Write sin 2t – sin 4t as a product of two functions. Solution Use the identity for sin A – sin B, with 2t = A and 4t = B.  2t  4t   2t  4t  sin 2t  sin 4t  2cos   sin    2   2  6t  2t   2cos sin    2  2  2cos3t sin( t )  2cos3t sin t Copyright © 2011 Pearson Education, Inc. Slide 9.3-10 9.3 Half-Number Identities • Half-number or half-angle identities for sine and cosine are used in calculus when eliminating the xy-term from an equation of the form Ax² + Bxy + Cy² + Dx + Ey + F = 0, so the type of conic it represents can be determined. • From the alternative forms of the identity for cos 2A, we can derive three additional identities, e.g. sin A . 2 cos 2 x  1  2 sin x 2 2 sin x  1  cos 2 x 2 A 1cos 2 x sin x   Let 2 x  A so that x  . 2 2 A 1cos A Choose the sign ± depending on sin   the quadrant of the angle A/2. 2 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-11 9.3 Half-Number Identities Half-Number Identities A 1  cos A cos   2 2 A 1  cos A sin   2 2 A 1  cos A A sin A tan   tan  2 1  cos A 2 1  cos A A 1  cos A tan  2 sin A Copyright © 2011 Pearson Education, Inc. Slide 9.3-12 9.3 Using a Half-Number Identity to Find an Exact Value Example Find the exact value of cos Solution cos  12 .    cos 6 12 2  1  cos  6 2 3  3 1  2 1 2 3 2   2    2 22 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-13 9.3 Finding Function Values of x/2 Example Given cos x  23 , with cos 2x , sin 2x , and tan 2x . 3 2  x  2 , find Solution The half-angle terminates in quadrant II since 32  x  2  34  2x   . x 1  23 1 6 sin    2 2 6 6 x 1  23 5 30 cos     2 2 6 6 6 x sin 2x 5 6 tan   30   x 2 cos 2  6 5 Copyright © 2011 Pearson Education, Inc. Slide 9.3-14 9.3 Simplifying Expressions Using Half-Number Identities 1  cos 12 x Example Simplify the expression  . 2 Solution This matches the part of the identity for cos A/2. Replace A with 12x to get 1  cos12 x 12 x   cos 2 2  cos 6 x. Copyright © 2011 Pearson Education, Inc. Slide 9.3-15