* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Circulatory System
Management of acute coronary syndrome wikipedia , lookup
Coronary artery disease wikipedia , lookup
Lutembacher's syndrome wikipedia , lookup
Myocardial infarction wikipedia , lookup
Jatene procedure wikipedia , lookup
Antihypertensive drug wikipedia , lookup
Quantium Medical Cardiac Output wikipedia , lookup
Dextro-Transposition of the great arteries wikipedia , lookup
The Circulatory System Chapter 42 Why have a circulatory system? Diffusion is too slow a process to transport chemicals through the body of an animal.  The presence of a circulatory system reduces the distance a substance must diffuse to enter or leave a cell.  The circulatory system does more than move gases, it is a critical component to maintaining homeostasis of the body.  Components of the cardiovascular system  Heart – Four chambers in humans  Arteries – Carry blood away from heart – Branch into smaller arterioles  Veins – Carry blood toward the heart  Capillaries – The site of chemical exchange between blood and interstitial fluid – Connect arteries to veins Blood flow pattern in humans ‘Double-loop’ circulation  body  vena cava  right atrium  right ventricle  pulmonary artery  lung  pulmonary vein  left atrium  left ventricle  aorta  arteries  arterioles  capillaries  venules  veins  vena cava  The blood that is low in oxygen is completely separated from the blood that is rich in oxygen  The heart        Located beneath the sternum Cone-shaped and about the size of a clenched fist Surrounded by a double layered sac Comprised mostly of cardiac muscle tissue The 2 atria are thin-walled and collect blood The ventricles are thick-walled and pump blood There are 4 valves which prevent backflow of blood during contraction The heartbeat      A complete sequence of contraction and relaxation is the cardiac cycle Systole – the heart muscle contracts and the chambers pump blood Diastole – the heart muscle relaxes and the chambers fill with blood The tempo of contraction is controlled by the sinoatrial (SA) node, sometimes called the pacemaker The SA node can be influenced by hormones, body temperature, exercise Blood pressure The force that blood exerts against a vessel wall Pressure is greatest in arteries during ventricular systole – this is the main force propelling blood from the heart through the vessels  Stress may trigger responses that cause the smooth muscles of vessel walls to contract, increasing blood flow and pressure  Blood in the veins is under very little pressure – it is aided in returning to the heart by skeletal muscles  Veins have valves that prevent backflow of blood   Blood flow to different body parts is regulated  All tissues and organs receive enough blood even though only 5% - 10% of the capillaries are carrying blood at any given time – The brain, heart, kidneys, and liver usually carry a full load of blood Blood flow to capillaries in other areas is controlled by smooth muscles in the artery walls  After a meal  increased flow to digestive tract  Exercise  increased flow to skeletal muscles  Exchange of materials Occurs across the thin walls of the capillaries  The capillary wall is a single ‘leaky’ layer of endothelial cells  About 85% of the fluid that leaves the blood at the arteriole end of the capillary re-enters from the interstitial fluid at the venous end  The remaining 15% of the fluid is lymph  The lymphatic system Lymph is similar in composition to interstitial fluid  It enters the lymphatic system by diffusing into lymph capillaries  It then drains back into the circulatory system at two locations near the shoulders  Lymph nodes are specialized swellings along the system that filter the lymph and attack viruses and bacteria  Blood      Connective tissue – cells suspended in liquid plasma – Average person has 4-6 L of whole blood Plasma – 90% water – Also contains electrolytes and plasma proteins Erythrocytes (RBCs = red blood cells) – Transport oxygen – No nuclei – Contain hemoglobin Leukocytes (white blood cells) – Function in defense and immunity – Number will increase during times of infection Platelets – Function in blood clotting Blood clotting Platelets clump together and form a temporary plug  Clotting factors are released that convert fibrinogen to fibrin  Fibrin forms threads to form the clot  Hemophilia – caused by a defect in the genes that control this process  Cardiovascular disease      Accounts for more than 50% of all U.S. deaths Heart attack – blockage of coronary arteries which leads to cardiac muscle damage Stroke – blockage of arteries in the brain Atherosclerosis – artery walls develop plaques which narrow the space and increase chance of clot formation and heart attack Hypertension – chronic high blood pressure which can promote atherosclerosis
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            