Download Notes Over 9.4 Checking a Solution Using a Graph

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Notes Over 9.4
Checking a Solution Using a Graph
The solution, or roots of an equation
are the x-intercepts.
Solve the equation algebraically. Check the solutions
graphically.
1 2
1.3 x  12 3
3 2
x  36
x  6
1 2
y  x  12 V0,12
3
Notes Over 9.4
Checking a Solution Using a Graph
Solve the equation algebraically. Check the solutions
graphically.
2. 3 x  2  50
2
 22  2
3x  48
3
3
2
x  16
x  4
y  3 x  48 V0,48
2
Notes Over 9.4
Checking a Solution Using a Graph
Solve the equation algebraically. Check the solutions
graphically.
3.
x 7  2
2
7 7
2
x 9
x  3
y  x 9
2
V0,9
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
4.
x  x  12
2
 12  12
2
x  x  12  0
y  x  x  12
b
1
1


2 a1
2
x

1
1


1
1 2
V

,

12





4
,
y        12  2
3
4
2
2
2
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
4.
x  x  12
2
  4   4   12
2
16  4  12
 3    3   12
2
9  3  12
 4, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
5.
x  5 x  6
2
6 6
2
x  5x  6  0
y  x  5x  6
b5
5


2 a1
2
1
5


5
5 2
V ,  
y     5 2   6  2 4 
2
2
x
2, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
5.
x  5 x  6
2
 2
 5 2   6
4  10  6
2
3
 5 3   6
9  15  6
2
2, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
6.
x  5x  6
2
6 6
2
x  5x  6  0
y  x  5x  6
b5
5


2 a1
2
x
1
5


5
5 2
V , 12 

1
,
y     5 2   6  2
6
4

2
2
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
6.
x  5x  6
2
  1
 5 1   6
1 5  6
2
6
 5 6   6
36  30  6
2
 1, 6
Notes Over 9.4
Using Quadratic Equations in Real Life
7. Algebraically check the solution in Example 3.
Registration appears to be about 210 dollars.
210  0.63 5   15.08 5   151.57
210  0.63 25   15.08 5   151.57
210  15.75  75.4  151.57
210  59.65 151.57
210  211.22
2
Notes Over 9.4
Related documents