Download to view Joe`s full PPT lecture

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Identification Numbers and Check
Digit Schemes: Using Abstract
Algebra in Your High School
Mathematics Class
Joseph Kirtland
Department of Mathematics
Marist College
Check Digit Schemes
• Goal: To catch errors when identification
numbers are transmitted.
• Append an extra digit using mathematical
methods.
• There are schemes that append two or more
digits...error correcting schemes.
Common Error Patterns
Error Type
Form
Relative Freq.
single digit error
a→b
79.1%
trans. adj. digits
ab → ba
10.2%
abc → cba
0.8%
aa → bb
0.5%
phonetic error
a0 ↔ 1a
a = 2, . . . , 9
0.5%
jump twin error
aca → bcb
0.3%
jump trans.
twin error
Modular Arithmetic
x (mod n ) = r where r is the remainder when x
is divided by n (n is a positive integer and
0 ≤ r ≤ n-1).
x = y (mod n) if x and y have the same
remainder when divided by n.
Modular Arithmetic
• 51 (mod 9) = 6
• 213 (mod 10) = 3
• 143 (mod 11) = 0
• 57 = 107 (mod 10)
• 3 = 43 (mod 10)
• 60 = 0 (mod 10)
(51=5•9+6)
(213=21•10+3)
(143=13•11+0)
US Postal Money Order
US Postal Money Order
General Form: a1a2a3a4a5a6a7a8a9a10a11
a11 = (a1+ a2+ a3+ a4+ a5+ a6+ a7+ a8+ a9 + a10) (mod 9)
Specific Number: 67021200988
8 = (6 + 7 + 0 + 2 + 1 + 2 + 0 + 0 + 9 + 8) (mod 9)
= 35 (mod 9)
=8
Detection Rate
# of ways error is detected
dr 
# of ways to make error
• Single digit error (a → b): 10 choices for
a and 9 choices for b resulting in 90 possible
ways.
• Transposition error (ab → ba): 10
choices for a and 9 choices for b resulting in
90 possible ways.
US Postal Money Order
a11 = (a1+ a2+ a3+ a4+ a5+ a6+ a7+ a8+ a9 + a10) (mod 9)
US Postal Money Order
a11 = (a1+ a2+ a3+ a4+ a5+ a6+ a7+ a8+ a9 + a10) (mod 9)
Single Digit Errors:
88
dr 
 98%
90
US Postal Money Order
a11 = (a1+ a2+ a3+ a4+ a5+ a6+ a7+ a8+ a9 + a10) (mod 9)
Single Digit Errors:
88
dr 
 98%
90
Transposition Errors:
0
dr 
 0%
90
UPC and EAN
UPC Version A
General Form: a1-a2a3a4a5a6-a7a8a9a10a11-a12
a1 - number system char. // a2a3a4a5a6 - company //
a7a8a9a10a11 - product // a12 - check digit
3a1+a2+3a3+a4+3a5+a6+3a7+a8+3a9+a10+3a11+a12 = 0 (mod 10)
Specific Number: 0-53600-10054-0
30+5+33+6+30+0+31+0+30+5+34+0 = 0 (mod 10)
40 = 0 (mod 10)
UPC Scheme – Single Digit Errors
…a… → …b…
c + 3a = 0 (mod 10) & c + 3b = 0 (mod 10)
(c + 3a) – (c + 3b) = 0 (mod 10)
3a – 3b = 0 (mod 10)
3(a – b) = 0 (mod 10)
a – b = 0 (mod 10)
a=b
UPC Scheme – Transposition Errors
…ab… → …ba…
c +3a+b = 0 (mod 10) & c+3b+a = 0 (mod 10)
(c + 3a + b) – (c + 3b + a) = 0 (mod 10)
3a + b – 3b – a = 0 (mod 10)
2a – 2b = 0 (mod 10)
2(a – b) = 0 (mod 10)
Undetected when |a – b| = 5
UPC Scheme
Single Digit Errors:
90
dr 
 100%
90
Transposition Errors:
80
dr 
 89%
90
IBM Scheme
Permutations
S10
- permutations of the set {0, 1, 2, …, 9}
- one-to-one & onto mappings
 0 1 2 3 4 5 6 7 8 9

  
 4 3 9 1 2 7 0 5 8 6
  (0, 4, 2, 9, 6)(1, 3)(5, 7)(8)
IBM Scheme
General Form: a1a2a3 . . . an-1an
 = (0)(1, 2, 4, 8, 7, 5)(3,6)(9)
n-even:
(a1) + a2 + (a3) + a4 + . . . + (an-1) + an = 0 (mod 10)
n-odd:
a1 + (a2) + a3 + (a4) + . . . + (an-1) + an = 0 (mod 10)
IBM Scheme
Specific Number: 00001324136 9
(0)+0+(0)+0+(1)+3+(2)+4+(1)+3+(6)+9
= 0 (mod 10)
0+0+0 +0 +2+3 +4+4 +2+3 +3+9
= 0 (mod 10)
30 = 0 (mod 10)
IBM Scheme – Single Digit Errors
…a… → …b…
c + σ(a) = 0 (mod 10) & c + σ(b) = 0 (mod 10)
(c + σ(a)) – (c + σ(b)) = 0 (mod 10)
σ(a) – σ(b) = 0 (mod 10)
σ(a) – σ(b) = 0
σ(a) = σ(b)
a=b
IBM Scheme
Transposition Errors …ab… → …ba…
c+σ(a)+b = 0(mod 10) & c+σ(b)+a = 0 (mod 10)
(c + σ(a) + b) – (c + σ(b) + a) = 0 (mod 10)
σ(a) – σ(b) + b – a = 0 (mod 10)
σ(a) – a = σ(b) – b (mod 10)
σ designed so this will not occur unless
a = 0 and b = 9 or a = 9 and b = 0.
IBM Scheme
Single Digit Errors:
Transposition Errors:
90
dr 
 100%
90
88
dr 
 98%
90
Theorem (Gumm, 1985)
Suppose an error detecting scheme with an even
modulus detects all single digit errors. Then for
every i and j there is a transposition error
involving positions i and j that cannot be
detected.
International Standard Book Numbers
ISBN-10……ISBN-13………EAN-13
ISBN-10 Scheme
General Form: a1a2a3a4a5a6a7a8a9a10
a1... – group/country number
(0,1=English, 3=German, 9978=Ecuador)
ai…aj – publisher number
aj+1…a9 – serial number
a10 – check digit
ISBN-10 Scheme
10a1+9a2+8a3+7a4+6a5+5a6+4a7+3a8+2a9+a10
= 0 (mod 11)
Specific Number: 0-88385-720-0
100+98+88+73+68+ 55+ 47+ 32+ 20+ 0
= 0 (mod 11)
0 + 72+64 + 21+48 + 25 + 28 + 6 + 0 + 0
= 0 (mod 11)
264 = 0 (mod 11)
ISBN-10 Scheme?
• What if you need a 10?
ISBN-10 Scheme?
• What if you need a 10?
• X represents 10.
ISBN-10 Scheme?
• What if you need a 10?
• X represents 10.
• Does catch all single digit and transposition of
adjacent digit errors, but introduces a new
character.
Symmetries of the Pentagon
Symmetries of the Pentagon
A B C

B A E
Reflections
D
E
C
A
B
D E

D C
D
E
C
B
A
Symmetries of the Pentagon
 A B C D E


D E A B C
Rotations
D
E
C
A
B
A
E
B
3
5
C
D
Symmetries of the Pentagon
D
C
E
E
D
C
A
B
3
5
C
B
A
D
A
B
C
D
B
E
D
C
A
B
E
A
E
Symmetries of the Pentagon
A
0  
A
A
3  
D
A
6  
E
A
9  
B
B C D E
A
 1  
B C D E 
B
B C D E
A
 4  
E A B C
E
B C D E
A
 7  
D C B A
D
B C D E

A E D C
B C D E
A B
 2  
C D E A 
C D
B C D E
A B
 5  
A B C D
A E
B C D E
A B
 8  
C B A E
C B
C D E

E A B 
C D E

D C B
C D E

A E D
Symmetries of the Pentagon
8*3=5
3*8=6
NOT COMMUTATIVE!
The Multiplication Table of D5
*
0
1
2
3
4
5
6
7
8
9
0
1
2
3
0
1
2
3
1
2
3
4
2
3
4
0
3
4
0
1
4
0
1
2
5
6
7
8
6
7
8
9
7
8
9
5
8
9
5
6
9
5
6
7
4
5
6
4
5
6
0
9
5
1
8
9
2
7
8
3
6
7
9
0
1
5
4
0
6
3
4
7
2
3
8
1
2
7
8
9
7
8
9
6
7
8
5
6
7
9
5
6
8
9
5
2
3
4
1
2
3
0
1
2
4
0
1
3
4
0
Verhoeff Scheme
General Form: a1a2a3 . . . an-1an
 = (0)(1,4)(2,3)(5,6,7,8,9)
* = Group Operation D5
n-1(a1)*n-2(a2)*n-3(a3)* . . . *(an-1)*an = 0
(a)*b ≠ (b)*a - antisymmetric
 = (0)(1,4)(2,3)(5,6,7,8,9)
German Bundesbank Scheme
AY7831976K1
German Bundesbank Scheme
General Form: a1a2a3 . . . a10a11
 = (0,1,5,8,9,4,2,7)(3,6)
* = Group Operation D5
AD G K L N S U Y Z
01 2 3 4 5 6 7 8 9
(a1)*2(a2)*3(a3)* . . . *10(a10)*a11 = 0
German Bundesbank Scheme
This scheme has one major
problem…………………………………………
………what is it?
The Euro!
An Error Correcting Scheme
General Form: a1a2a3 . . . a9a10
a9 , a10 check digits
a1 + a2 + a3 + . . . + a9 + a10 = 0 (mod 11)
a1 + 2a2 + 3a3 + . . . + 9a9 + 10a10 = 0 (mod 11)
An Error Correcting Code
62150334a9a10
6+2+1+5+0+3+3+4+a9+a10 = 0 (mod 11)
24 +a9+a10 = 0 (mod 11)
2 +a9+a10 = 0 (mod 11)
16+22+31+45+50+63+73+84+9a9+10a10
= 0 (mod 11)
6 + 4 + 3 + 20 + 0 + 18+ 21 + 32+9a9+10a10
= 0 (mod 11)
104 +9a9+10a10 = 0 (mod 11)
5 +9a9+10a10 = 0 (mod 11)
An Error Correcting Code
6215033472 → 6218033472
6+2+1+8+0+3+3+4+7+2 = 0 (mod 11)
36 = 0 (mod 11)
3 = 0 (mod 11)
An Error Correcting Code
16+22+31+48+50+63+73+84+97+102
= 3i (mod 11)
6+4+3+32+0+18+21+32+63+20 = 3i (mod 11)
199 = 3i (mod 11)
1 = 3i (mod 11)
i=4
References
• Gallian, J.A., The Mathematics of Identification
Numbers, College Math Journal, 22(3), 1991,
194-202.
• Gallian, J. A., Error Detection Methods, ACM
Computing Surveys, 28(3), 1996, 504-517.
• Gumm, H. P., Encoding of Numbers to Detect
Typing Errors, Inter. J. Applied Eng. Educ., 2,
1986, 61-65.
Related documents