* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Protein Synthesis - Building Directory
Transcription factor wikipedia , lookup
RNA interference wikipedia , lookup
Community fingerprinting wikipedia , lookup
Gene regulatory network wikipedia , lookup
List of types of proteins wikipedia , lookup
Cre-Lox recombination wikipedia , lookup
RNA silencing wikipedia , lookup
Biochemistry wikipedia , lookup
Non-coding DNA wikipedia , lookup
Polyadenylation wikipedia , lookup
Expanded genetic code wikipedia , lookup
Promoter (genetics) wikipedia , lookup
Molecular evolution wikipedia , lookup
RNA polymerase II holoenzyme wikipedia , lookup
Eukaryotic transcription wikipedia , lookup
Messenger RNA wikipedia , lookup
Genetic code wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Silencer (genetics) wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Non-coding RNA wikipedia , lookup
Transcriptional regulation wikipedia , lookup
Protein Synthesis Transcription & Translation Protein Synthesis: An Overview  “The DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins.”   Proteins are the link between genotype (AAC) and phenotype (eye color) Protein synthesis is the process of transferring the information encoded in DNA into proteins   Step 1: Transcription Step 2: Translation Transcription    Transcription is the synthesis of messenger RNA (mRNA) from DNA Occurs in the nucleus DNA does not leave the nucleus  Analogy: blueprints do not get used at the job site when constructing a house DNA vs. RNA DNA RNA Contains: Adenine, guanine, cytosine, thymine Contains: Adenine, guanine, cytosine, uracil 5-carbon sugar is deoxyribose 5-carbon sugar is ribose Double-stranded Single-stranded Transcription: Initiation     Promoter = a specific sequence of DNA (starting point); consists of initiation site and TATA box) RNA polymerase binds to the promoter on the DNA molecule Transcription factors (proteins) bind to promoter region to help RNA polymerase find the starting point. RNA polymerase then separates the 2 DNA strands Transcription: Elongation   As RNA polymerase moves along the DNA, it untwists the double helix and separates the strands RNA polymerase adds nucleotides to the 3’ end of the mRNA molecule  Follows the base-pairing rules Transcription: Termination  Termination signal = sequence of bases in DNA molecule that tell RNA polymerase to stop transcription  “finish line” in a race mRNA is released from the DNA  Most common termination signal = AATAAAA  RNA Modifications In eukaryotes, mRNA is edited before it’s sent out of the nucleus  2 major types of modifications:  Alteration of mRNA ends  RNA splicing  Alteration of mRNA Ends  5’ end receives a 5’ cap   Modified form of a guanine nucleotide 3’ end receives a poly-A tail    30 – 200 adenine nucleotides Protects the ends from being degraded by enzymes in the cytoplasm Shoelace analogy RNA Splicing  Genes have stretches of nucleotides that don’t code for anything   Noncoding sequence = introns    “junk DNA” “intervening sequences” Coding regions = exons During RNA splicing, the introns are removed by enzymes and the exons are joined together by SLICEOSOMES (made of snRNPs + proteins) Translation  Big Picture:   The building of a polypeptide (protein) from the information encoded in mRNA Occurs in the cytoplasm, on a ribosome tRNA  Transfer RNA (tRNA):    Cloverleaf shape Contains anticodon (triplet of bases, complementary to mRNA) Carries specific amino acid to ribosome during translation Ribosomes  Made up of 2 subunits composed of rRNA & proteins:    Large subunit Small subunit Have special binding sites:   P site: holds tRNA with amino acid chain A site: holds “next” tRNA • The “green room” Translation  Consists of 3 stages:    Chain Initiation Chain Elongation Chain Termination Translation: Chain Initiation  mRNA and tRNA join  Codon + complementary anticodon • mRNA is AUG (start codon) • tRNA is UAC  Large and small ribosomal subunits join, forming a functional ribosome Translation: Chain Elongation  Amino acids are added one by one by the following process:    mRNA codon bonds with anticodon on tRNA Peptide bond is formed between new amino acid and the last one tRNA moves over from A site to P site Translation: Chain Termination    Elongation continues until a stop codon is reached (UAA, UAG, UGA) Water is added instead of an amino acid Polypeptide (protein) is released from ribosome Point Mutations (aka gene mutations)    Just one change in a nucleotide in a single gene Can seriously affect phenotype  genetic disorder Sickle cell anemia results from one nucleotide substitution. Point Mutations   Base-pair substitution       Replacing one nucleotide with another Example: instead of G, it’s C Can cause a noticeable change in protein structure Can be a silent mutation with no actual change in amino acid sequence. Can change only one a. acid Non sense mutations change sequence to a stop codon.  Normal Hemoglobin sequence: CTT   GAA Glutamic Acid Sickle Cell Sequence:  CAT   GUA Valine Point Mutations  Base-pair insertions or deletions    Adding or losing a base-pair Changes the whole “reading frame” Where, within a gene, would this be the biggest problem?   Normal Sequence: AAG GCG TAG      UUC CGC AUC  Phenylalanine-arginineisolecine Insertion: AAG GGC GTA G    UUC CCG CAU C  Phenylalanine-prolinehistidine Frame Shift Mutations Insertions- extra nucleotide is added; moves reading frame up one nucleotide & changes every amino acid after that point.  Deletions- one nucleotide is removed; moves reading frame down one base.  Both are more harmful if at the beginning of a gene.  Chromosomal Mutations      A chunk of a chromosome is changed. Addition or duplication: A piece of a chromosome is added so genes appear twice. Deletion: part of the chromosome is lost (genes lost) Inversion: piece of the chromosome breaks twice and broken piece inserts upside down (reverses order of genes) Translocation: two nonhomologous chromosomes break & exchange genes.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            