* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch. 6 – Systems of Equations
Linear algebra wikipedia , lookup
Quartic function wikipedia , lookup
Cubic function wikipedia , lookup
Quadratic equation wikipedia , lookup
Signal-flow graph wikipedia , lookup
Elementary algebra wikipedia , lookup
System of polynomial equations wikipedia , lookup
History of algebra wikipedia , lookup
Ch. 7 – Matrices and Systems of Equations 7.3 – Multivariable Linear Systems Systems of 3 equations  Here is an example of a system of 3 linear equations:  Can do elimination to solve, but must do it a lot x  2 y  3z  9  x  3 y  4 2 x  5 y  5 z  17  Here is an example of the same system of 3 linear equations in Row-Echelon Form (REF):     REF  equations are in a stair-step pattern, leading coefficient is 1 It’s much easier to solve! Just plug in 2 for z to find y, then plug that in to find x! We want multivariable equations to look like this! x  2 y  3z  9 y  3z  5 z2 REF it!  Ex 1: Solve this system of equations.      x  2 y  3z  9  x  3 y  4 2 x  5 y  5 z  17 To solve, we will do several eliminations to get the equations in REF! To do that, we need our stair-step pattern and leading coefficients of 1! ADD and REPLACE! Step 1: First equation must be led by x - CHECK! Step 2: Second equation must be led by y  Must get rid of x, so add equations 1 and 2 The new equation is y + 3z = 5, so replace it for the second equation to get…  Now 2nd equation is led by y!  x  2 y  3z  9 y  3z  5 2 x  5 y  5 z  17 x  2 y  3z  9 y  3z  5 REF it!  (cont’d): Solve this system of equations:  2 x  5 y  5 z  17 Step 3: Third equation must be led by z  Must get rid of x, so add -2•(first equation) and second equation 2 x  4 y  6 z  18 2 x  5 y  5 z  17  y  z  1  x  2 y  3z  9 y  3z  5  y  z  1 Must get rid of y, so add 2nd and 3rd equations y  3z  5  y  z  1 z2 2z  4  Back-substitute to get y = -1 and x = 1, so we get…  …(1, -1, 2) x  2 y  3z  9 y  3z  5 z2 REF it!  Ex 2: Solve this system of equations. 2 x  4 y  z  4 2 x  4 y  6 z  13 x  2 y  0.5 z  2 2 x  4 y  6 z  13 4x  2 y  z  6 4x  2 y  z  6 Divide 1st equation by 2… 4 x  8 y  12 z  26 4x  2 y  z  6 6 y  11z  20 Add -2(E2) and E3 and replace for E2… x  2 y  0.5 z  2 6 y  11z  20 4x  2 y  z  6 Add -4(E1) and E3 and replace for E3… REF it!  Ex 2: Cont’d. 4 x  8 y  2 z  8 4x  2 y  z  6 10 y  z  14 x  2 y  0.5 z  2 6 y  11z  20  10 y  z  14 Add 5(E2) and 3(E3) and replace for E3… 30 y  55 z  100 30 y  3 z  42 58z  58 x  2 y  0.5 z  2 6 y  11z  20  58 z  58 Divide E2 and E3 down to REF… REF it! x  2 y  0.5 z  2 11 10 y z  6 3 z 1  Ex 2: Cont’d.  Now back-substitute… 11 10 y  6 3  3 y 2 Answer: ( ½ , -3/2 , 1 )  3 x  2     0.5(1)  2  2 1 x 2  Ex 3: Solve this system of equations.  You can always rewrite the system as an augmented matrix (3x4) of coefficients – it will save you lead!  Just get 1’s in the main diagonal! x  2 y  3z  5  x  3 y  5z  4 2 x  3z  0 Write as a 3x4 matrix… 1 2 3 1 3 5 4 5 0 1 2 9 1 2 3 1 2 3 0 5 4 3 0 5 Add E1 and E2 and replace for E2… 1 2 3 0 2 2 9 3 0 1 0 5 Add -2(E1) and E3 and replace for E3…  Ex 3: cont’d. 2 4 6 10 0 3 2 0 0 4 9 10 1 2 3 0 0 2 9 9 10 1 4 5 Add -4(E2) and E3 and replace for E3… 0 4 8 0 9 10 4 36 0 0 1 46 1 2 3 0 0 2 9 1 46 1 0 5 Divide E3 by -1 to get…   Ex 3: Cont’d. 3 0 0 2 9 1 46 1 0 5 x  2 y  3z  5 y  2z  9 z  46 Now back-substitute… y  2(46)  9  1 2 y  101 Answer: ( 69 , 101 , 46 ) x  2(101)  3(46)  5 x  69  Ex 4: Solve this system of equations. 2 x  y  3z  4 4 x  2 z  10 2 x  3 y  13z  8 Write as a 3x4 array… 4 2 6  8 4 0 2 10 0 2 8 2 2 4 1 0 3 2 4 10 2 3 13 8 Add -2(E1) and E2 and replace for E2… 2 0 1 2 3 8 2 3 13 8 4 2 Add E1 and E3 and replace for E3…  Ex 4: Solve this system of equations. 2 1 3 4 2 3 13 8 0 4 16 4 2 3 1 4 0 2 8 2 0 4 16 4 Add 2(E2) and E3 and replace for E3… 0 4 16 0 16 4 0  4 0 0 4 0 2 1 0 2 0 0 3 4 8 0 2 0 We’re left with 0 = 0 in the 3rd equation. Since this equation is true, we have an infinite number of solutions…   Ex (cont’d): If the answer is infinite solutions, we must find a generic triple that solves the system:  Step 1: Let z = a.  Step 2: Back-substitute to get expressions for x and y in terms of a za 2 y  8(a)  2 2 x  y  3z  4  2 y  8z  2 y  4a  1 2 x  (4a  1)  3(a)  4  Answer: ( 5/2 – ½a , 4a – 1 , a ) 5 1 x  a 2 2 0z  0
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            