* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download DNA Structure
Zinc finger nuclease wikipedia , lookup
DNA sequencing wikipedia , lookup
Eukaryotic DNA replication wikipedia , lookup
DNA repair protein XRCC4 wikipedia , lookup
Homologous recombination wikipedia , lookup
DNA profiling wikipedia , lookup
Microsatellite wikipedia , lookup
United Kingdom National DNA Database wikipedia , lookup
DNA polymerase wikipedia , lookup
DNA replication wikipedia , lookup
DNA nanotechnology wikipedia , lookup
Mrs. Stewart Biology I Honors STANDARDS:  CLE 3210.4.1 Investigate how genetic information is encoded in nucleic acids.  CLE 3210.4.2 Describe the relationships among genes, chromosomes, proteins, and hereditary traits. OBJECTIVES: (today, I will…)  Evaluate the structure of nucleic acids  Determine how genetic information is “coded” in nucleic acids  Create complementary DNA strands using Chargaff’s rule Nucleic Acids  Macromolecules containing :  Carbon  Hydrogen  Oxygen  Nitrogen  Phosphorus  Function: Store and transmit genetic/hereditary information Two types of Nucleic Acids DNA RNA DNA Stands for: Deoxyribonucleic Acid DNA Structure  DNA is made up of two strands that are arranged into a twisted, ladder-like structure called a Double Helix.  A strand of DNA is made up of millions of tiny subunits called Nucleotides.  Each nucleotide consists of 3 parts: 1. Phosphate group 2. sugar 3. Nitrogenous base Nucleotides Phosphate Nitrogenous Base Pentose Sugar DNA sugar  The 5 carbon sugar for DNA is Deoxyribose  That is where the name (Deoxyribo)nucleic acid comes from Nucleotides  The phosphate and sugar form the backbone of the DNA molecule, whereas the bases form the “rungs”.  There are four types of nitrogenous bases. 4 different Nitrogen bases A Adenine C Cytosine T Thymine G Guanine Purines A Adenine G Guanine Pyrimidines T Thymine C Cytosine Chargaff’s rule  Erwin Chargaff observed that the percentage of adenine equals the percentage of thymine, and the percentage of cytosine equals the percentage of guanine.  Example: in one strand of DNA the following amounts may be found:  15% Adenine  15% Thymine  35% Cytosine  35% Guanine Complementary base pairing:  Each base will only bond with one other specific base. (Chargaff’s rule)  Adenine (A)  Thymine (T)  Cytosine (C)  Guanine (G) Form a base pair. Form a base pair. DNA Structure  Because of this complementary base pairing, the order of the bases in one strand determines the order of the bases in the other strand. A T C G T A C G A T G C T A Practice:  Complete the complementary DNA strand for the following sequence: GTAACTCCT CATAGAGGA CTCCTAA AC GAGGATTTG TAGAATGCC ATCTTACGG DNA Structure  To crack the genetic code found in DNA we need to look at the sequence of bases.  The bases are arranged in triplets (sets of 3) called codons. AGG-CTC-AAG-TCC-TAG TCC-GAG-TTC-AGG-ATC DNA Structure  A gene is a section of DNA that codes for a protein.  Each unique gene has a unique sequence of bases.  This unique sequence of bases will code for the production of a unique protein.  It is these proteins and combination of proteins that give us a unique phenotype. DNA Gene Trait Protein Your Task  Draw a flow chart to show how to get from: DNA Replication Mrs. Stewart Biology I Honors STANDARDS:  CLE 3210.4.1 Investigate how genetic information is encoded in nucleic acids.  CLE 3210.4.2 Describe the relationships among genes, chromosomes, proteins, and hereditary traits. OBJECTIVES: (today, I will…)  Evaluate the structure of DNA and the need for replication  Create complementary DNA strands to simulate replication DNA Double Helix  Made of 2 strands of nucleotides  These strands are joined together with the pairing of the Nitrogen bases  (A, T, C, G)  The bases are joined by Hydrogen bonds Think – Pair - Share  Look at the picture and try to figure out what “antiparallel” means.  Did you notice that the strands of DNA run in “opposite directions”? 5’ and 3’ ends of DNA  Refers to the orientation of the carbon atoms on the deoxyribose  Strands run in opposite directions  One strand is “upside down” Think – pair - share  Why does DNA need to replicate itself? DNA Replication  DNA makes an exact copy of itself  Occurs during the S stage of interphase Semi-conservative  Each strand of the double helix will serve as a template for the new strands that will form  End result is two complete DNA double helixes – each containing one strand from the original molecule and one newly made complementary strand Helicase  Enzyme that “unzips” the DNA double helix by breaking the Hydrogen bonds between the bases to separate the strands in preparation for replication  Creates a “replication fork” DNA Polymerase Uses “free-floating” nucleotides in the nucleus to build the complementary strand of DNA 5‘ to 3‘ direction  The new DNA strands need to form in the 5 prime to 3 prime direction.  Leading strand: forms continuously because it is forming in the 5’ to 3’ direction  Lagging strand: forms in short segments called Okazaki fragments, so that it can also form in the 5’ to 3’ direction  Animation of replication #1  Animation of replication #2