Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ACM-BCB 2016 The 7th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics October 2-5, 2016 OrganizingCommittee GeneralChairs: ÜmitV.Çatalyürek,GeorgiaInstituteofTechnology GenevieveMelton-Meaux,UniversityofMinnesota ProgramChairs: JohnKececioglu,UniversityofArizona AdamWilcox,UniversityofWashington WorkshopChair: AnanthKalyanaraman,WashingtonStateUniversity TutorialChair: MehmetKoyuturk,CaseWesternReserveUniversity DemoandExhibitChair: Robert(Bob)Cottingham,OakRidgeNational Laboratory PosterChairs: LinYang,UniversityofFlorida DongxiaoZhu,WayneStateUniversity RegistrationChair: PreetamGhosh,VirginiaCommonwealthUniversity PublicityChairs DanielCapurro,PontificiaUniv.CatólicadeChile A.ErcumentCicek,BilkentUniversity PierangeloVeltri,U.MagnaGraeciaofCatanzaro StudentTravelAwardChairs MayD.Wang,GeorgiaInstituteofTechnologyand EmoryUniversity JaroslawZola,UniversityatBuffalo,TheStateUniversity ofNewYork StudentActivityChair MarziehAyati,CaseWesternReserveUniversity DanDeBlasio,CarnegieMellonUniversity ProceedingsChairs: XinghuaMindyShi,UofNorthCarolinaatCharlotte YangShen,TexasA&MUniversity WebAdmins: AnasAbu-Doleh,TheOhioStateUniversity HyunAnderson,TheOhioStateUniversity JonathanKho,GeorgiaInstituteofTechnology SteeringCommittee: AidongZhang,StateUniversityofNewYorkatBuffalo, Co-Chair MayD.Wang,GeorgiaInstituteofTechnologyand EmoryUniversity,Co-Chair SrinivasAluru,GeorgiaInstituteofTechnology TamerKahveci,UniversityofFlorida ChristopherC.Yang,DrexelUniversity 2 ACM-BCB2016Program REGISTRATION Sunday7:30–16:00/Monday-Tuesday8:00–16:00/Wednesday8:00–11:00 8am Seattle1 8:25am 10am 12pm 1pm Seattle2 Sunday,October2,2016 ContinentalBreakfast Location:FourthFloorBreakstation Seattle3 Belltown Pioneer CNB-MAC (8:50am– 12pm) (1:20pm– 6pm) BigLS (8:25am– 12pm) (1:30pm– 5pm) MAHA (8:25am– 11:40am) (1:30pm– 5pm) pSALSA (8:25am– 12pm) (1:30pm– 5:30pm) TDA-Bio (8:50am– 12:05pm) (1:30pm– 5:15pm) 4pm 6pm FirstHill ParBio (10am– 12pm) BrainKDD (1pm– 5pm) StudentNetworkingandSocialEventattheSeattleGreatWheel Meetatthepre-eventspaceonthe4thfloor EmeraldII Tutorial1 (T1) Tutorial2 (T2) Tutorial3 (T3) Tutorial4 (T4) WORKSHOPS* CNB-MAC 3rdInternationalWorkshoponComputationalNetworkBiology:Modeling,Analysis,andControl Organizers:Byung-JunYoon,XiaoningQianandTamerKahveci BigLS 4thACMInternationalWorkshoponBigDatainLifeSciences Organizers:JaroslawZolaandAnanthKalyanaraman MAHA 1stInternationalWorkshoponMethodsandApplicationsinHealthcareAnalytics Organizers:FeiWang,JyotishmanPathakandNigamShah pSALSA 3rdWorkshoponParallelSoftwareLibrariesforSequenceAnalysis Organizers:SrinivasAluru TDA-Bio 1stInternationalWorkshoponTopologicalDataAnalysisinBiomedicine Organizers:BalaKrishnamoorthyandBeiWangPhillips ParBio 5thInternationalWorkshoponParallelandCloud-basedBioinformaticsandBiomedicine Organizers:MarioCannataroandJohnA.Springer BrainKDD The3rdInternationalWorkshoponDataMiningandVisualizationforBrainScience Organizers:ShuiwangJi,LeiShi,HanghangTong,ShuaiHuangandPaulThompson *Seepage12fordetailedworkshopprograms. TUTORIALS* Sunday,October2 8:30-9:30 T1:Combinatorialmethodsfornucleicacidsequenceanalysis Presenters:SreeramKannanandMarkChaisson,UniversityofWashington 10:00-12:00 T2:NetworkSciencemeetsTissue-specificBiology Presenters:ShahinMohammadiandAnanthGrama,PurdueUniversity 1:30-3:30pm T3:BigDataforDiscoveryScience Presenters:BenHeavner(InstituteforSystemsBiology),RaviMadduri(ArgonneNationalLab),JackVanHorn (UniversityofSouthernCalifornia),andNaveenAshish(FredHutchinsonCancerResearchCenter) 4:00-6:00pm T4:DeepLearningforBioinformaticsandHealthInformatics Presenter:SungrohYoon,SeoulNationalUniversity 3 Monday,October3(SeattleII) 11:00-12:00pm T5:Data-DrivenAnalysisofUntargetedMetabolomicsDatasets Presenter:SohaHassoun,TuftsUniversity 1:30-3:30pm T6:EvolutionaryAlgorithmsforProteinStructureModeling Presenters:EmmanualSapin,AmardaShehu,andKennethDeJong,GeorgeMasonUniversity Tuesday,October4(SeattleII) 10:00-12:00pm T7:TheISBCancerGenomicsCloud Presenter:SheilaReynolds,InstituteforSystemsBiology 1:30-3:30pm T8:LivingtheDREAM:Crowdsourcingbiomedicalresearchthroughchallengesandensembles Presenters:GauravPandey,LaraMangravite,SolveigSieberts,RobertVogel,andGustavoStolovitzky,IcahnSchool ofMedicineatMountSinai,SAGEBionetworks *Seepage19formoreinformationonindividualtutorials. StudentNetworkingandSocialEvent Allstudentsandpostdocsareinvitedtothestudent-networkingevent,whichwillbeheldSundayat6pm.Thisyeartheevent willincludeanexcursiontoTheSeattleGreatWheel(thelargestobservationwheelonthewestcoast).Thestudentactivityis focusedondevelopingprogramsforstudentgrowththrougheducationalandnetworkingopportunities.Thisisthesecondyearofa recognizedstudentactivityandlastyearimprovedthestudentrelationshipsduringtheconference.Theeventwillbeginat6:00PM onSunday,October2,2016withscientificspeednetworkinginthepre-eventspaceonthe4thfloorbeforetheshortwalktoElliot Bay.(ThenetworkingeventisfreebutpleasebringcashforadiscountedadmissiontotheGreatWheel.) 4 Monday,October3,2016 8:00– 10:00 8:15– 8:30 8:30– 9:30 ContinentalBreakfast Location:FourthFloorBreakstation OpeningRemarks (Location:SeattleI&II) GeneralChairs:ÜmitV.Çatalyürek,GeorgiaInstituteofTechnology& GenevieveMelton-Meaux,UniversityofMinnesota ProgramChairs:JohnKececioglu,UniversityofArizona&AdamWilcox,UniversityofWashington KeynoteTalk1 (Location:SeattleI&II) Don’tforgetthenotes:WhyNLPiskeytohealthcaretransformation WendyW.Chapman,UniversityofUtah SessionChair:GenevieveMelton-Meaux,UniversityofMinnesota 9:30– 10:00 MorningBreak Session1A Location:SeattleI SystemsBiology SessionChair:AnnaRitz, ReedCollege Session1B Location:SeattleII DemoPresentations&Tutorials SessionChair:RobertW.Cottingham, OakRidgeNationalLaboratory 10:00 TinNguyen,DianaDiaz,Sorin Draghici.“TOMAS:Anovel TOpology-awareMeta-Analysis approachappliedtoSystembiology” DemoPresentations 10:00 “Softwaretoolsforsequence comparison,sequencemapping,and patient-specifichealthcareoutcome 10:30 prediction”.Presenter:AnkitAgrawal, HueyEngChua,SouravS.Bhowmick, NorthwesternUniversity JieZheng,LisaTucker-Kellogg. “TAPESTRY:Network-centricTarget PrioritizationinDisease-related SignalingNetworks” 10:00– 12:00 11:00 AisharjyaSarkar,YuanfangRen, RashaElhesha,TamerKahveci. “Countingindependentmotifsin probabilisticnetworks” 11:30 PaolaPesantez-Cabrera,Ananth Kalyanaraman.“Detecting CommunitiesinBiologicalBipartite Networks” 12:30– 13:30 10:20 “TheCMHVariantWarehouse–A CatalogofGeneticVariationinPatients ofaChildren’sHospital".Presenter: ByunggilYoo,Children’sMercyHospital 10:40 “KBase:Developingcollaborative analysesofbiologicalfunctionusing NarrativesandAppCatalog”.Presenter: RobertW.Cottingham,OakRidge NationalLaboratory Tutorial 11:00 T5:Data-DrivenAnalysisofUntargeted MetabolomicsDatasets Presenter:SohaHassoun,TuftsUniversity Session1C Location:SeattleIII AutomatedDiagnosisand Prediction SessionChair:JaroslawZola, UniversityatBuffalo 10:00 Shou-HsuanStephenHuang,MingChihShih,YouliZu.“AMultiObjectiveFlowCytometryProfiling forB-CellLymphomaDiagnosis” 10:30 YingSha,JananiVenugopalan,May D.Wang.“ANovelTemporal SimilarityMeasureforPatients BasedonIrregularlyMeasuredData inElectronicHealthRecords” 11:00 AydinSaribudak,AdarshaA.Subick, JoshuaA.Rutta,M.ÜmitUyar,“The Alzheimer'sDiseaseNeuroimaging Initiative.GeneExpressionBased ComputationMethodsfor Alzheimer'sDiseaseProgression usingHippocampalVolumeLoss andMMSEScores” 11:30 QiulingSuo,HongfeiXue,JingGao, AidongZhang.“Riskfactoranalysis basedondeeplearningmodels” Lunch (Onyourown) 5 Session2A Location:SeattleI BiologicalModeling SessionChair:TamerKahveci, UniversityofFlorida Session2B Location:SeattleII Tutorials 13:30 HanyuJiang,MorisaManzella,Luka Djapic,NarayanGanesan. “ComputationalFrameworkforin-Silico StudyofVirtualCellBiologyviaProcess SimulationandMultiscaleModeling” 13:30– 15:30 14:00 MuhiburRasheed,NathanClement, AbhishekBhowmick,ChandrajitBajaj. “StatisticalFrameworkforUncertainty QuantificationinComputational MolecularModeling” 14:30 JeetBanerjee,TanviRanjan,Ritwik KumarLayek.“StabilityAnalysisof PopulationDynamicsModelinMicrobial BiofilmswithNon-participatingStrains” 15:00 ShuoWang,MansoorehAhmadian, MinghanChen,JohnTyson,YoungCao. “AHybridStochasticModelofthe BuddingYeastCellCycleControl Mechanism” 15:30– 16:00 16:00– 18:00 18:00– 20:00 Session2C Location:SeattleIII ApplicationstoHealthcareProcesses SessionChair:BethBritt, UniversityofWashington 13:30 ShitalKumarMishra,SouravS.Bhowmick, HueyEngChua,JieZheng.Predictive “ModelingofDrugEffectsonSignaling PathwaysinDiverseCancerCellLines” T6:EvolutionaryAlgorithmsfor ProteinStructureModeling Presenters:EmmanualSapin, AmardaShehu,andKennethDe Jong,GeorgeMasonUniversity 14:00 QianCheng,JingboShang,JoshuaJuen, JiaweiHan,BruceSchatz.“Mining DiscriminativePatternstoPredictHealth StatusforCardiopulmonaryPatients” 14:30 PaulD.Martin,MichaelRushanan, ThomasTantillo,ChristophLehmann,Aviel D.Rubin.“ApplicationsofSecureLocation SensinginHealthcare” 15:00 SaiNiveditaChandrasekaran,Alexios Koutsoukas,JunHuan.“Investigating MultiviewandMultitaskLearning FrameworksforPredictingDrug-Disease Associations” AfternoonBreak–RefreshmentsProvided ACMSIGBioGeneralMeeting Location:SeattleI&II PosterReception–Lighthorsd'oeuvres&Cashbar (seepage21forlistofposters) DEMOS(Belltown) “Softwaretoolsforsequencecomparison,sequencemapping,andpatient-specifichealthcareoutcomeprediction”.Presenter:Ankit Agrawal,NorthwesternUniversity “TheCMHVariantWarehouse–ACatalogofGeneticVariationinPatientsofaChildren’sHospital".Presenter:ByunggilYoo, Children’sMercyHospital “KBase:DevelopingcollaborativeanalysesofbiologicalfunctionusingNarrativesandAppCatalog”.Presenter:RobertW. Cottingham,OakRidgeNationalLaboratory 6 Tuesday,October4,2016 ContinentalBreakfast Location:FourthFloorBreakstation KeynoteTalk2 (Location:SeattleI&II) Anevolutionarybiologist'sskepticalsearchforcomputationalbiology JosephFelsenstein,UniversityofWashington SessionChair:SrinivasAluru,GeorgiaInstituteofTechnology 8:00– 10:00 8:30– 9:30 9:30– 10:00 MorningBreak Session3A Location:SeattleI InferringPhylogeniesand Haplotypes SessionChair:Ananth Kalyanaraman, WashingtonStateUniversity 10:00 JucheolMoon,OliverEulenstein. “Robinson-FouldsMedianTrees:A Clique-basedHeuristic” 10:30 AlexeyMarkin,OliverEulenstein. “ManhattanPath-DifferenceMedian Trees” 11:00 10:00– 12:00 MisaghKordi,MukulS.Bansal.“Exact AlgorithmsforDuplication-TransferLossReconciliationwithNon-Binary GeneTrees” 11:30 OliviaChoudhury,Ankush Chakrabarty,ScottEmrich.“HAPIGen:HighlyAccuratePhasingand ImputationofGenotypeData” Session3B Location:SeattleII Tutorials Session3C Location:SeattleIII TextMiningandClassification SessionChair:XinghuaMindyShi, UniversityofNorthCarolinaat Charlotte T7:TheISBCancerGenomicsCloud Presenter:SheilaReynolds,Institutefor SystemsBiology 10:00 MajidRastegar-Mojarad,Ravikumar KomandurElayavilli,LiweiWang, RashmiPrasad,HongfangLiu. “PrioritizingAdverseDrugReaction andDrugRepositioningCandidates generatedbyLiterature-Based Discovery” 10:30 KishlayJha,WeiJin.“MiningNovel KnowledgefromBiomedicalLiterature usingStatisticalMeasuresand DomainKnowledge” 11:00 RamakanthKavuluru,MariaRamosMorales,TaraHoladay,AmandaG. Williams,LauraHaye,JulieCerel. “ClassificationofHelpfulComments onOnlineSuicideWatchForums” 11:30 HaotianXu,MingDong,Dongxiao Zhu,AlexanderKotov,AprilIdalski Carcone,SylvieNaar-King.“Text ClassificationwithTopic-basedWord EmbeddingandConvolutionalNeural Networks” 12:00– 13:30 WomeninBioinformaticsPanel Chair:MayD.Wang, GeorgiaInstituteofTechnology& EmoryUniversity Lunch (Onyourown) 7 Session4A Location:SeattleI SequenceAnalysisandGenome Assembly SessionChair:OliverEulenstein, IowaStateUniversity 13:30 RahulNihalani,SrinivasAluru. “EffectiveUtilizationofPairedReads toImproveLengthandAccuracyof ContigsinGenomeAssembly” 14:00 PriyankaGhosh,Ananth Kalyanaraman.“AFastSketch-based AssemblerforGenomes” 13:30– 15:30 14:30 SubrataSaha,Sanguthevar Rajasekaran.“POMP:apowerful splicemapperforRNA-seqreads” 15:00 TonyPan,PatrickFlick,ChiragJain, YongchaoLiu,SrinivasAluru. “Kmerind:AFlexibleParallelLibrary forK-merIndexingofBiological SequencesonDistributedMemory Systems” 15:30– 16:00 16:00– 17:30 17:30– 19:00 19:00– 21:30 Session4B Location:SeattleII Tutorials Session4C Location:SeattleIII KnowledgeRepresentation Applications SessionChair:NaveenaYanamala, CentersforDiseaseControland Prevention T8:LivingtheDREAM:Crowdsourcing biomedicalresearchthroughchallenges andensembles Presenters:GauravPandey,Lara Mangravite,SolveigSieberts,Robert Vogel,andGustavoStolovitzky,Icahn SchoolofMedicineatMountSinai,SAGE Bionetworks 13:30 NaveenAshish,ArihantPatawari, SimratSinghChhabra,ArthurW. Toga.“NameSimilarityforComposite ElementNameMatching” 14:00 EdwardWHuang,ShengWang, RunshunZhang,BaoyanLiu, XuezhongZhou,ChengXiangZhai. “PaReCat:PatientRecord SubcategorizationforPrecision TraditionalChineseMedicine” 14:30 MichaelR.WyattII,TravisJohnston, MiaPapas,MichelaTaufer. “DevelopmentofaScalableMethod forCreatingFoodGroupsUsingthe NHANESDatasetandMapReduce” 15:00 ShahinMohammadi,AnanthGrama. “Denovoidentificationofcelltype hierarchywithapplicationto compoundmarkerdetection” AfternoonBreak–RefreshmentsProvided NSFSponsoredStudentResearchForum Location:SeattleI&II Break(forbanquetsetup) CashBarat18:30 Banquet Location:SeattleI,II&III 8 Wednesday,October5,2016 8:00– 10:00 8:30– 9:30 9:30– 10:00 ContinentalBreakfast Location:FourthFloorBreakstation KeynoteTalk3 (Location:SeattleI&II) Data,Predictions,andDecisions EricHorvitz,MicrosoftResearch SessionChair:ÜmitV.Çatalyürek,GeorgiaInstituteofTechnology MorningBreak Session5A Location:SeattleI ProteinStructureandDynamics SessionChair:SreeramKannan,Univ.ofWashington Session5B Location:SeattleII ApplicationstoMicrobesandImagingGenetics SessionChair:MarkClement,BrighamYoungUniv. 10:00– 12:00 10:00 DongSi.“AutomaticDetectionofBeta-barrelfromMedium ResolutionCryo-EMDensityMaps” 10:30 TatianaMaximova,DanielCarr,ErionPlaku,AmardaShehu. “Sample-basedModelsofProteinStructuralTransitions” 11:00 DarioGhersi,RobertoSanchez.“RecoveringBoundFormsof ProteinStructuresUsingtheElasticNetworkModeland MolecularInteractionFields” 11:30 RamuAnandakrishnan,MayankDaga,AlexeyOnufriev,WuChunFeng.“MultiscaleApproximationwithGraphical ProcessingUnitsforMultiplicativeSpeedupinMolecular Dynamics” 10:00 JeffreyD.McGovern,EricJohnson,AlexDekhtyar,Michael Black,ChristopherKitts,JenniferVanderkelen.“Library-Based MicrobialSourceTrackingviaStrainIdentification” 10:30 SergheiMangul,DavidKoslicki.“Reference-freecomparisonof microbialcommunitiesviadeBruijngraphs” 11:00 MdAshadAlam,OsamuKomori,VinceCalhoun,Yu-PingWang. “RobustKernelCanonicalCorrelationAnalysistoDetectGeneGeneInteractionforImagingGeneticsData” 11:30 MdAshadAlam,VinceCalhoun,Yu-PingWang.“Influence FunctionofMultipleKernelCanonicalAnalysistoIdentify OutliersinImagingGeneticsData” 12:00– 13:30 13:30– 15:30 NoonBreak–RefreshmentsProvided Session6A Location:SeattleI ProteinandRNAAnalysis SessionChair:JohnKececioglu,UniversityofArizona 13:30 DeeptakVerma,GevorgGrigoryan,ChrisBailey-Kellogg. “OCoM-SOCoM:CombinatorialMutagenesisLibraryDesign OptimallyCombiningSequenceandStructureInformation” 14:00 ByunghanLee,JunghwanBaek,SeunghyunPark,Sungroh Yoon.“deepTarget:End-to-endLearningFrameworkfor microRNATargetPredictionusingDeepRecurrentNeural Networks” 14:30 NaozumiHiranuma,ScottLundberg,Su-InLee. “CloudControl:LeveragingmanypublicChIP-seqcontrol experimentstobetterremovebackgroundnoise” 15:00 WenruoBai,JeffreyBilmes,WilliamS.Noble.“Bipartite matchinggeneralizationsforpeptideidentificationin tandemmassspectrometry” Session6B Location:SeattleII AdvancingAlgorithmsandMethods SessionChair:AdamWilcox,UniversityofWashington 13:30 SoumiRay,AdamWright.“DetectingAnomaliesinAlertFiring withinClinicalDecisionSupportSystemsusingAnomaly/Outlier DetectionTechniques” 14:00 Chih-WenCheng,YingSha,MayD.Wang.“InterVisAR:An InteractiveVisualizationforAssociationRuleSearch” 14:30 LaxmiParida,NiinaHaiminen.“ScalableAlgorithmsatGenomic ResolutiontofitLDDistributions” 9 Keynotes Monday,October3|WendyW.Chapman,UniversityofUtah Title:Don’tforgetthenotes:WhyNLPiskeytohealthcaretransformation Abstract:Themajorityofclinicalinformationusefulforpatientcareandresearchislockedin clinicalnotesandonlyaccessiblewithgreatpainandeffort.NaturalLanguageProcessinghas thepotentialtounlocktheinformationinthenotestosupportphenotypingforprecision medicine,qualityimprovement,andhealthservicesresearch.Thistalkwillillustratethe potentialofNLPthroughexistingapplications,willdescribethechallengesofmakingNLPareal andscalablesolution,andwillprovideconcretesuggestionsforhowtheaudiencecanhelpNLP reachitspotentialinhealthcareanddiscovery. Biography: Dr. Chapman earned her Bachelor’s degree in Linguistics and her PhD in Medical InformaticsfromtheUniversityofUtahin2000.From2000-2010shewasaNationalLibraryof Medicine postdoctoral fellow and then a faculty member at the University of Pittsburgh. She joinedtheDivisionofBiomedicalInformaticsattheUniversityofCalifornia,SanDiegoin2010. In 2013, Dr. Chapman became the chair of the University of Utah, Department of Biomedical Informaticswhereshecontinuesherresearchonnaturallanguageprocessinginthecontextof informaticssolutionstoproblemsthatvexhealthcare. TuesdayOctober4|JosephFelsenstein,UniversityofWashington Title:Anevolutionarybiologist'sskepticalsearchforcomputationalbiology Abstract:Thistalkwillexplainhow,startingwithaninterestinbiology,andalsoincomputers,I graduallylearnedhowtousecomputerstoilluminateproblemsinevolutionarybiology.Along thewayIlearnedabouttheoreticalpopulationgenetics,learnedwhyitisnotalwaysbestto writeyourtheoremsdown,andhowfascinationwithaproblemmayindicatethatsomething moreimportantisatstake.Imovedfromtheoreticalpopulationgeneticstoalgorithmsfor inferringevolutionarytrees(phylogenies).Thestatisticalviewpointthatwasstandardin theoreticalpopulationgeneticsturnedouttobehighlycontroversialamongtaxonomists studyingevolution,andwasalsoconsideredunnecessarybycomputerscientists.Bothofthese groupsofpeoplewerewrong.Iwillarguethatcomputerscientistsandbiologistsshouldindeed communicate,butthatthisisbestdoneviaastatistician.Iwillarguethataparametricmodel basedonevolutionarytheoryiscrucial,butthatoneshouldbewareofbelievinginittoomuch. Computationisessentialinbiology,butIwonderwhethertherereallyisafieldcalled ComputationalBiology.Oroughttobe..IntheeraofComplexSystemsandBigData,aSimple SystemsperspectivebasedonSmallDatahasdistinctadvantages.Aswereachlimitsinwhat genomedatacantellus,aconcernforefficientuseofthosedatawillbecomeimportant,andan understandingoftheeffectsofstatisticalnoisewillproveimportant,anditshouldencouragea littlemorehumility. Biography:JoeFelsensteingrewupinPhiladelphia,andattendedtheUniversityofWisconsin, wherehegotinvolvedwiththeoreticalpopulationgeneticsinthelabofJamesF.Crow.Hewent ontodohisPh.D.withRichardLewontinattheUniversityofChicago,andapostdoctoral fellowshipwithAlanRobertsonattheInstituteofAnimalGeneticsattheUniversityof Edinburgh.HehassincethenbeenafacultymemberoftheDepartmentofGeneticsatthe UniversityofWashington,Seattle,anditssuccessortheDepartmentofGenomeSciences,and heisalsojointlyappointedintheDepartmentofBiology.Althoughhistrainingwasthusin theoreticalpopulationgenetics,sincehisgraduateworkhehasalsobeenfascinatedbythe reconstructionofevolutionarytrees(phylogenies).Thisledhimtopromoteanddevelop likelihoodmethodsforinferenceofphylogenies,toapplythebootstrapmethodtoinvestigating whichpartsofthemarewell-supported,andtoreleasethefirstgeneralprogrampackagefor inferringphylogenies,PHYLIP,in1980.Hewishesthatcomputationalbiologytextbookswould paymoreattentiontophylogenies,whicharethebasicstructuresformakingsenseof multispeciesdata.Hisworkinthisareahasalsoledhimintotheextremeandbyzantineconflicts insystematics--someofhisclosestfriendshipsincomputationalphylogeneticswerecemented bysharedvictimization.Joehasreceivedanumberofverynicehonors,whicharelistedathis onlineCV,butwhichfalsemodestydictatesthathenotmentionhere. 10 WednesdayOctober5|EricHorvitz,MicrosoftResearch Title:Data,Predictions,andDecisions Abstract:Iwilldescribeseveralprojectsthathighlightdirectionswiththeuseofmachine learningtoenhancepatientcareandtobuildinsightsabouthealthandwellbeing.Iwillfirst presentresearchonleveraginglargeamountsofdatadrawnfromelectronichealthrecordsto predictoutcomesandtoguidedecisions.Iwillfocusonopportunitieswithreducing readmissionsandidentifyingpatientsatriskforhospital-associatedinfection,emphasizingthe promiseofcouplingpredictivemodelswithdecisionanalysis.Iwillreflectonchallenging directionswiththeseefforts,includingcausalinferenceandtransferlearning.Then,Iwillmove tostudiesofhealthandwell-beingfromnon-traditionalsourcesofdata,includingtheuseof anonymizedlogsofonlineactivities.Iwillpresentresultsonpharmacovigilance,detectingthe onsetofillness,andbuildingdeeperunderstandingsofepisodicinformationneedsofpatients overphasesofillness.I’llwrapupbydiscussingseveralaspirationaldirectionswithdata, predictions,anddecisions. Biography: Eric Horvitz is technical fellow at Microsoft, where he serves as director of the MicrosoftResearchlabatRedmond.Hisinterestsspantheoreticalandpracticalchallengeswith computingsystemsthatlearnfromdataandthatcanperceive,reason,anddecide.Hisefforts and collaborations have led to fielded systems in the areas of transportation, healthcare, ecommerce,andoperatingsystems.EricreceivedMDandPhDdegreesatStanfordUniversity. He has been elected fellow of the National Academy of Engineering (NAE), AAAI, ACM, AAAS, and the American Academy of Arts and Sciences. He received the Feigenbaum Prize and the ACM-AAAIAllenNewellAwardforhisresearchcontributions.HecurrentlyservesontheBoard ofRegentsoftheNationalLibraryofMedicine,theComputerScienceandTelecommunications Board (CSTB), and the advisory board for the Center for Causal Discovery at the University of Pittsburgh.Moreinformationcanbefoundathttp://research.microsoft.com/~horvitz. 11 rd Workshops 3 InternationalWorkshoponComputationalNetwork Biology:Modeling,Analysis,andControl(CNB-MAC) 8:45am-6pm,October2,2016 Organizers: Byung-JunYoon,TexasA&MUniversity XiaoningQian,TexasA&MUniversity TamerKahveci,UniversityofFlorida https://cnbmac.org/ Next-generationhigh-throughputprofilingtechnologieshave enabledmoresystematicandcomprehensivestudiesofliving systems.Networkmodelsplaycrucialrolesinunderstanding thecomplexinteractionsthatgovernbiologicalsystems,and theirinteractionswithexternalenvironment.Theinference andanalysisofsuchcomplexnetworksandnetwork-based analysisoflarge-scalemeasurementdatahavealreadyshown strongpotentialsforunveilingthekeymechanismsof complexdiseasesaswellasfordesigningimproved therapeuticstrategies.Atthesametime,theinferenceand analysisofcomplexbiologicalnetworksposenewexciting challengesforcomputerscience,signalprocessing,control, andstatistics.TheCNB-MACworkshopaimstoprovidean internationalscientificforumforpresentingrecentadvances incomputationalnetworkbiologythatinvolvemodeling, analysis,andcontrolofbiologicalsystemsunderdifferent conditions,andsystem-orientedanalysisoflarge-scaleOMICS data. 08:50-9:00OpeningRemarks 09:00-10:00KeynoteTalkbyDr.Su-InLee(Universityof Washington), TalkTitle:MiningBigDataforMolecularMarker Identification 10:00-10:20 CoffeeBreak 10:20-12:00Session1 “SparseFeatureSelectionforClassificationandPredictionof MetastasisinEndometrialCancer”,MehmetErenAhsen, ToddBoren,NitinSingh,BurookMisganaw,DavidMutch, KathleenMoore,FloorBackes,CarolynMcCourt,Jayanthi Lea,DavidMiller,MichaelWhiteandMathukumalli Vidyasagar “DataRequirementsforModel-BasedCancerPrognosis Prediction”,LoriDaltonandMohammadmahdiRezaeiYousefi “Comparisonoftissue/diseasespecificintegratednetworks usingdirectedgraphletsignatures”,ArzuBurcakSonmezand TolgaCan “OptimalROC-basedClassificationandPerformanceAnalysis underBayesianUncertaintyModels”,LoriDalton “SNPbySNPbyEnvironmentInteractionNetworkof Alcoholism”,AminZollanvariandGilAlterovitz 12:00-13:20LunchBreak 13:20-15:00Session2 “Towardstargetedcombinatorialtherapydesignforthe treatmentofcastration-resistantprostatecancer”,Osama ArshadandAniruddhaDatta “Combinationtherapydesignformaximizingsensitivityand minimizingtoxicity”,KevinMatlock,NoahBerlow,Charles KellerandRanadipPal “DIGNiFI:Discoveringcausativegenesfororphandiseases usingprotein-proteininteractionnetworks”,XiaoxiaLiu, ZhihaoYang,HongfeiLin,MichaelSimmonsandZhiyongLu “SEQUOIA:Significanceenhancednetworkqueryingthrough context-sensitiverandomwalkandminimizationofnetwork conductance”,HyundooJeongandByung-JunYoon “FindingLow-ConductancesetswithDenseinteractions (FLCD)forbetterproteincomplexprediction”,YijieWangand XiaoningQian 15:00-15:20CoffeeBreak 15:20-16:40Session3 “InferringMicrobialInteractionNetworksfromMetagenomic DataUsingSgLV-EKFAlgorithm”,MustafaAlshawaqfeh, AhmadBaniYounesandErchinSerpedin “StochasticModelingandSimulationofReaction-Diffusion SystemwithHillFunctionDynamics”,MinghanChen,FeiLi, ShuoWangandYangCao “InterpretiveTime-FrequencyAnalysisofGenomic Sequences”,HamedHassaniSaadi,RezaSameniandAmin Zollanvari “ComprehensiveEvaluationofRNA-seqQuantification MethodsforLinearity”,HaijingJin,Ying-WooiWanand ZhandongLiu 16:40-17:05Five-MinuteLightningTalksforPosters 17:05-17:50PosterSession 17:50-18:00ClosingRemarks 12 4thACMInternationalWorkshoponBigDatainLife Sciences(BigLS) 8:25am-5:30pm,October2,2016 Organizers: JaroslawZola,SUNYBuffalo AnanthKalyanaraman,WashingtonStateUniversity http://www.bigls.org Theever-growingvolumeanddiversityofbiologicaland biomedicaldatacollectionscontinuestoposenew challengesandincreasingdemandsoncomputingand datamanagement.TheinherentcomplexityofthisBig Dataforcesustorethinkhowwecollect,store,combine andanalyzeit.BigLSisaworkshopseriesdedicatedto thebroadthemeofBigDatainlifesciences.Thegoalof theworkshopistobringtogetherleadingresearchers andpractitionersworkingonadiverserangeofBigData problemsrelatingtobiologyandmedicine,andengage theminadiscussionaboutcurrentBigDataproblems, thestateofcomputationaltoolsandanalytics,the challengesandthefuturetrendswithinlifesciences. 8:25am-8:30am:OpeningRemarks 8:30am-10:00RegularPapers “Explorationofregressionmodelsforcancernoncoding mutationrecurrence”,TanjinXu,StephenA.Ramsey. “OptimizationofI/OIntensiveGenomeAssemblieson theCoriSupercomputerwithBurstBuffer”,Joshua Pritchett,BillAndreopoulos. “ExplorationsinVeryEarlyPrognosisoftheHuman ImmuneResponsetoInfluenza”,ManuChaturvedi, TomtitGhosh,MichaelKirby,XiaoyuLiu,XiaofengMa, ShannonStiverson. 10:00am-10:30amCoffeeBreak(withstudentposters ondisplay) 10:30am-12:00pmKeynoteTalkbyDr.NathanPrice (InstituteofSystemsBiology,Arivale,Inc.) Title:Actionablebigdataforproactive healthcare 12pm-1:30pm LunchBreak 1:30pm-3:10pmInvitedTalks–Session1 InvitedtalkbyDr.WilliamStaffordNoble(Universityof Washington),Talktitle:“JointImputationof EpigenomicsDatabyThreeDimensionalTensor Factorization” InvitedtalkbyDr.AdamMargolin(OregonHealth& ScienceUniversity),Talktitle:“Inferringgenomic predictorsofcancerphenotypes:machinelearning, crowd-sourcing,andbigdata” Q&Asession 3:10pm-3:30pmCoffeeBreak 3:30pm-4:10pmInvitedTalks–Session2 InvitedtalkbyDr.DavidHeckerman(Microsoft Research),Talktitle:“Embracingbigdataingenomics” 4:15pm-5:30pmPostersessionandinteraction 13 1stInternationalWorkshoponMethodsand ApplicationsinHealthcareAnalytics(MAHA) 8:30am-5:30pm,October2,2016 Organizers: FeiWang,UniversityofConnecticut JyotishmanPathak,CornellUniversity NigamShah,StanfordUniversity https://sites.google.com/site/feiwang03/acm-bcbworkshop-on-healthcare-analytics Healthcareisundergoingamassivetransition,dueto changesinpaymentincentives,growthofclinicaldata warehouses,advancesingenomesequencing technologyanddigitalimaging,aswellastheincreased roleofthepatientinmanagingtheirownhealth informationandrapidaccumulationofbiomedical knowledge.Asaresult,dataanalyticstechniques,for knowledgediscoveryandderivingdatadriveninsights fromvariousdatasources,areincreasinglyimportantin modernhealthcare.Although,effectiveanalytical approacheshavebeenappliedinmanyhealthcare problems,severalchallengesremainincluding:data heterogeneity,sparsity,irregularsamplingandthe difficultyofdrawinginferencesfromsuchdata.This workshopfocusesonnovelmethodologiesandtheir applicationsinaddressingtheseemerginghealthcare analyticsproblemsfrombothacademiaandindustry. 8:30am-8:35amOpeningRemarks 8:35am-9:10amSession1 “UsingaSemi-AutomatedModelingEnvironmentto ConstructaBayesian,SepsisDiagnosticSystem,”Peter HaugandJeffreyFerraro InvitedtalkbyDr.WanprachaArtChaovalitwongse,Talk title:“OptimizationinMedicalAnalytics:FromDatato KnowledgetoDecisions” 10:10am-10:30amCoffeeBreak 10:30am-11:05amSession2 “AutomaticclassificationofCo-occurringpatient events,”AlexanderTitus,RebeccaFaillandAmarDas “OnInterestingnessMeasuresforMiningStatistically SignificantandNovelClinicalAssociationsfromEMRs,” OrhanAbar,RichardJ.Charnigo,AbnerRayapatiand RamakanthKavuluru 11:40am-1:30pmLunchBreak 1:30pm-3:05pmSession3 InvitedTalkbyDr.DanielaWitten,Talktitle:“Learning fromtime” “AutomatedVerificationofPhenotypesusingPubMed,” RyanBridges,JetteHenderson,JoyceHo,ByronWallace andJoydeepGhosh 3:05pm-3:30pmCoffeeBreak 3:30pm-5:20pmSession4 “PredictingFutureFrequentUsersofEmergency DepartmentsinCaliforniaState,”MayanaPereira, VikhyatiSingh,ChunPanHon,T.GregMcKelvey,Shanu SushmitaandMartineDeCock “Predictinghuman-immunodeficiencyvirusrebound aftertherapyinitiation/switchusinggenetic,laboratory, andclinicaldata,”MattiaProsperi,AlejandroPironti, FrancescaIncardona,GiuseppeTradigoandMaurizio Zazzi “FeatureSelectionModelforDiagnosis,Electronic MedicalRecordsandGeographicalDataCorrelation,” GiovanniCanino,QiulingsSuo,PietroH.Guzzi,Giuseppe Tradigo,AidongZhangandPierangeloVeltri 5:20pm-5:30pmClosingRemarks 14 3rdWorkshoponParallelSoftwareLibrariesfor SequenceAnalysis(pSALSA) 8:25am-5:30pm,October2,2016 Organizers: SrinivasAluru,GeorgiaTech. http://psalsa.gatech.edu/ High-throughputDNAsequencinginstrumentsare capableofgeneratingterabytesofsequencingdataina singleexperimentatacostthatisaffordableona routinebasis.Analyzingsuchdataisfundamentalto manyapplicationsincludinggenomeresequencing,de novogenomesequencing,transcriptomesampling, metagenomics,andpopulationdiversitystudies.The rateandvolumeofdatagenerationisexposingthe limitationsofserialbioinformaticssoftware.Effective exploitationofhighperformancecomputing technologiesincludingmulticores,accelerators,cluster andcloudcomputingplatformscanbridgethiscritical gap. Thegoalofthisworkshopistobringtogethera communityofbioinformaticsresearchersinterestedin developmentofparallelalgorithmsandhigh performancecomputingsoftwareforhigh-throughput DNAsequenceanalysisanditsmyriadapplications.In particular,thisworkshopfocusesoncommunity-driven developmentofparallelsoftwarelibrariestoenablethe bioinformaticscommunitytomoreeasilyexploithigh performancecomputingtechnologies.Developmentof suchlibrariesisfeasiblebecausebioinformatics applicationsoftenrelyonacommoncoreofindexand datastructures–fore.g.,lookuptables,suffix trees/arrays,deBruijngraphsetc.Suchlibrarieshave provedenormouslyusefulinotherapplicationdomains (e.g.BLASlibrariesforscientificcomputing),andsimilar effortsarecurrentlyunderwayinotherapplication domains(e.g.parallelgraphlibraries). ThisworkshopissupportedinpartbyanNSF/NIHBig Dataawardtodevelopparallelsoftwarelibrariesfor highthroughputsequencing. 8:25am-8:30amOpeningRemarks 8:30am-9:15amNCBIPathogendetectionpipelinefor foodsafety:SNPsandMLSTschemes RichaAgarwala,NCBI,NIH 9:15am-10:00amSketchingBiologicalSequencesfor StorageandComputation JaroslawZola,SUNYBuffalo 10:00am-10:30amCoffeeBreak 10:30am-11:15amHigh-ThroughputSequencing AnalysisontheAWScloud MiaChampion,Amazon,Inc. 11:15am-12:00pmAnalyzingGenomicDataatScale withADAM FrankAustinNothaft,UCBerkeley 12pm-1:30pm LunchBreak 1:30pm-2:30pmKeynoteTalk:Atourofcontemporary genomeassemblyalgorithmsandsoftware AydınBuluç,LawrenceBerkeleyNationalLab 2:30pm-3:15pmSKESA:Fastandaccuratehaploid genomeassemblerwithapplicationinPathogen detection AlexandreSouvorov,NCBI,NIH 3:15pm-3:35pmCoffeeBreak 3:45pm-4:30pmFastEtch:FastandEfficientGenome AssemblyUsingSketching PriyankaGhosh,WashingtonStateUniversity 4:30pm-5:15pmParBLiSS:Aparallelbioinformatics libraryforshortsequences SrinivasAluru,GeorgiaTech 5:15pm-5:30pmDiscussionandWrapUp 15 1stInternationalWorkshoponTopologicalData AnalysisinBiomedicine(TDA-Bio) 8:50am-5pm,October2,2016 Organizers: BalaKrishnamoorthy,WashingtonStateUniversity BeiWangPhillips,UniversityofUtah http://www.sci.utah.edu/~beiwang/acmbcbworkshop2 016/ Datasetsofdifferentformsinbiomedicalscienceshave seenahugeincreaseinsizeandcomplexityinthepast twodecades.Wehavemadesubstantialprogressin variousaspectsofgenomics,e.g.,mappingofwhole genomesofhumansaswellasothersmallandlarge species.Similarly,alothasbeenexploredinthescope ofthesequence-to-structure-to-functionparadigmfor proteins.Atthesametime,currentdatachallengesin biomedicinearemuchmorediverse,aswellasvariedin scope.Thesheerscaleanddiversityofdatasourcesand typesencounteredintoday'sbiomedicaldatasetsoften rendertheroutinecomputationaltechniques ineffective.Recently,asuiteofnewtechniquestermed topologicaldataanalysis(TDA)hasshownalotof promiseindiscoveringstructureinlarge,highdimensional,anddiversedatasetsthatothertraditional techniquescouldnotfind.Therangeofapplications includesgeneexpressionanalysis,voting,and basketballplayers'performances,tonameafew.This workshopwillpresentaconciseyetself-contained overviewofthekeyaspectsofTDA,withaneyetoward motivatingtheapplicationofthesetechniquesto problemsinbioinformaticsandcomputationalbiology (BCB).Whiletopologicaltechniqueshavebeenapplied previouslyincertainsubfieldsofBCB(e.g.,tomodel proteinandDNA/RNA3Dstructure),theyhaveproved tobemuchmoreversatileandpowerfulthanthese applicationsmightsuggest.Weaimtoshowcasethe versatilityandstrengthofthissuiteoftechniquesinthis workshop. Thisworkshopwillexposetheaudiencetothekey fundamentalaswellascomputationalaspectsof topology.Thespeakerswillintroduce(withintheirtalks) basicTDAconceptsandtechniques,suchassimplicial complexes,homology,persistenthomology,Reeb graphsandmapper.Theywillalsopresenthowthese conceptsandtechniqueshavebeen,orpotentially couldbe,employedtotackleinterestingproblemsin severalareasofBCB. 8:50am-9:00amOpeningRemarks 9:00am-10:00amKeynoteTalkbyDr.YusuWang(The OhioStateUniversity) Title:TwoExamplesofApplicationofTopological MethodsinNeuronDataAnalysis 10:00am-10:35amInvitedtalkbyDr.ChaoChen(City UniversityofNewYork) Title:ExtractingandUsingTopologicalStructuresinthe AnalysisofBiomedicalImages 10:35am-10:50amCoffeeBreak 10:50am-11:30amInvitedtalkbyDr.ElizabethMuch (UniversityofAlbany) Title:UtilizingTopologicalDataAnalysistoDetect Periodicity 11:30am-12:05pmInvitedtalkbyDr.BrittanyFasy (MontanaStateUniversity) Title:UsingTopologicalDataAnalysistoStudyGlandular Architecture 12:05pm-1:30pmLunchBreak 1:30pm-2:30pmKeynoteTalkbyDr.GunnarCarlsson (StanfordUniversity,Ayasdi) Title:TheShapeofBiomedicalData 2:30pm-3:20pmDemobyDr.SvetlanaLockwood (WashingtonStateUniversity) Title:OpenSourceSoftwareforTDA 3:20pm-3:25pmCoffeeBreak 3:25pm-4:00pmInvitedtalkbyDr.BeiWangPhillips (UniversityofUtah) Title:TopologicalDataAnalysisforBrainNetworks 4:00pm-4:35pmInvitedtalkbyDr.MichaelRobinson Title:FindingCross-SpeciesOrthologswithLocal Topology 4:40pm-5:10pmPanelDiscussion 5:10pm-5:15pmClosingRemarks 16 5thInternationalWorkshoponParallelandCloudbasedBioinformaticsandBiomedicine(ParBio) 10am-12pm,October2,2016 Organizers: MarioCannataro,University"MagnaGræcia"of Catanzaro JohnSpringer,PurdueUniversity http://staff.icar.cnr.it/cannataro/parbio2016/ Duetotheavailabilityofhigh-throughputplatforms (e.g.nextgenerationsequencing,microarrayandmass spectrometry)andclinicaldiagnostictools(e.g.medical imaging),arecenttrendinBioinformaticsand Biomedicineistheincreasingproductionof experimentalandclinicaldata.Consideringthecomplex analysispipelineofthebiomedicalresearch,the bottleneckismoreandmoremovingtowardthe storage,integration,andanalysisofexperimentaldata, aswellastheircorrelationandintegrationwithpublicly availabledatabanks.ThegoaloftheParBioworkshopis tobringtogetherscientistsinthefieldsofhigh performanceandcloudcomputing,computational biologyandmedicine,todiscuss,amongtheothers,the organizationoflargescalebiologicalandbiomedical databases,theparallel/service-basedimplementation ofbioinformaticsandbiomedicalapplications,and problemsandopportunitiesofmovingbiomedicaland healthapplicationsonthecloud. 9:55am-10:00amOpeningRemarks 10:00am-12:00pmPaperSession “High-performancedatastructuresfordenovo assemblyofgenomes:cacheobliviousgeneric programming,”FrancoMilicchio,GiuseppeTradigo, PierangeloVeltri,MattiaProsperi “G-quadruplexStructurePredictionandIntegrationin theGenData2020DataModel,”GiuseppeTradigo, FrancescaCristiano,StefanoAlcaro,SergioGreco, GianlucaPollastri,PierangeloVeltri,MattiaProsperi “AMulti-threadedAlgorithmforMiningMaximal CohesiveDenseModulesfromInteractionNetworks withGeneProfiles,”SaeedSalem,AdityaGoparaju “ASurveyofSemanticIntegrationApproachesin Bioinformatics,”ChaimaaMessaoudi,RachidaFissoune, HassanBadir 17 The3rdInternationalWorkshoponDataMiningand VisualizationforBrainScience(BrainKDD) 1pm-5pm,October2,2016 Organizers: ShuiwangJi,WashingtonStateUniversity LeiShi,ChineseAcademyofSciences HanghangTong,ArizonaStateUniversity ShuaiHuang,UniversityofWashington PaulThompson,UniversityofSouthernCalifornia https://sites.google.com/site/brainkdd2016/ Understandingbrainfunctionisoneofthegreatest challengesfacingscience.Today,brainscienceisexperiencing rapidchangesandisexpectedtoachievemajoradvancesin thenearfuture.InApril2013,U.S.PresidentBarackObama formallyannouncedtheBrainResearchthroughAdvancing InnovativeNeurotechnologiesInitiative,theBRAINInitiative. InEurope,theEuropeanCommissionhasrecentlylaunched theEuropeanHumanBrainProject(HBP).Intheprivate sector,theAllenInstituteforBrainScienceisembarkingona new10-yearplantogeneratecomprehensive,large-scale datainthemammaliancerebralcortexundertheMindScope project.Theseongoingandemergingprojectsareexpected togenerateadelugeofdatathatcapturethebrainactivities atdifferentlevelsoforganization.Thereisthusacompelling needtodevelopthenextgenerationofdatamining, visualizationandknowledgediscoverytoolsthatallowoneto makesenseofthisrawdataandtounderstandhow neurologicalactivityencodesinformation.Thisworkshopwill focusonexploringtheforefrontbetweencomputerscience andbrainscienceandinspiringfundamentallynewwaysof mining,visualizationandknowledgediscoveryfromavariety ofbraindata. 1:00pm-1:10pmOpeningRemarks 1:10pm-2:10pmKeynoteTalkbyDr.HanchuanPeng(Allen InstituteofBrainScience), Talktitle:“MassiveBrainScaleInformatics” 2:10pm-2:50pmPaperSession1 “ENIGMA-Viewer:InteractiveVisualizationStrategiesfor ConveyingEffectSizesinMeta-Analysis,”GuohaoZhang, PeterKochunov,ElliotHong,NedaJahanshad,PaulThompson andJianChen “HierarchicalSpatio-temporalVisualAnalysisofCluster EvolutioninElectrocorticographyData,”Sugeerth Murugesan,KristoferBouchard,EdwardChang,Max Dougherty,BerndHamannandGuntherH.Weber 2:50pm-3:20pmCoffeeBreak 3:20pm-4:20pmKeynoteTalkbyDr.BingniWenBrunton (UniversityofWashington), Talktitle:Data-intensiveapproachestounderstandingneurial computationsunderlyingnaturalisticbehaviors 4:20pm-5:00pmPaperSession2 “Sub-networkbasedKernelsforBrainNetwork Classification,”BiaoJie,MinxiaLiu,XiJiangandDaoqiang Zhang “UsingNetworkAlignmentforAnalysisofConnectomes: ExperiencesfromaClinicalDataset,”PietroHiramGuzzi, MariannaMilano,OlgaTymofiyeva,DuanXu,Christopher HessandMarioCannataro 18 Tutorials T1:Combinatorialmethodsfornucleicacidsequenceanalysis SreeramKannanandMarkChaisson,UniversityofWashington Abstract: By deciphering the sequences of genomes, we are able to determine the ‘blueprint’ of how our cells function. Unfortunatelywhileourgenomesarepolymersofbillionsofnucleotides,methodsforreadingsequencesarelimitedtohundredsto thousands of nucleotides. To determine the sequence of a genome, many small fragments of DNA are read, and the genome is inferredthrough‘denovo’fragmentassembly,wheretheseshortfragmentsarestitchedtogethertoreconstructtheentiregenome. In this tutorial, we will discuss information-theoretic barriers and algorithmic methods for reconstructing DNA, and the allied combinatorialproblemsinvolvedforsolvinggenomestructure.Inparticular,wewilldiscussthefollowingaspectsindetail. 1. Thearchitectureofhumangenomesandhowthiscreateschallengesforfragmentassembly. 2. Thecharacteristicsofhigh-throughputsequencingdata. 3. Informationtheoreticbarriersforfragmentassembly 4. Combinatorial methods for de novo fragment assembly, including novel challenges for assembling reads from thirdgenerationlong-readsequencers. 5. ChallengesinRNAsequenceassembly T2:NetworkSciencemeetsTissue-specificBiology ShahinMohammadiandAnanthGrama,PurdueUniversity Abstract:Networksareubiquitousacrossdisciplinestomodelsystems-levelcharacteristics.Inbiology,thesenetworkscanrepresent interactionsamongadiversesetofbiomolecules,rangingfromgenes,proteins,non-codingRNAs,andmetabolites.Concurrentwith advancesinhigh-throughputtechnologies,alargebodyofresearchhasbeendevotedtomethodsandmodelsaimedatextracting information from the ever-increasing interaction datasets. However, unlike its counterpart in sequence analysis, a majority of fundamentalproblemsinnetworkanalysisare“hard”tosolve.Inthistutorial,wereviewandexperimentwiththelatestnetwork analysis tools, including alignment, community detection, and information flow analysis. We will illustrate how to utilize publicly availabletissuecelltype-specificprofilestoconstruct“tissue-specificinteractomes”andhowtousethesespecializednetworksto gainnovelbiologicalinsights. T3:BigDataforDiscoveryScience BenHeavner,InstituteforSystemsBiology RaviMadduri,ArgonneNationalLab JackVanHorn,UniversityofSouthernCalifornia NaveenAshish,FredHutchinsonCancerResearchCenter Abstract:This2hourtutorialwillpresentthe“BigData”biomedicaldiscoverytechnologies,end-to-endsolutions,andapplications developedattheBigDataforDiscoveryScience(BDDS)CenterofExcellenceforBigDataComputinginBiomedicalResearch.The BDDScenteritselfisuniquelyfocusedonhandlingbigdatainbiomedicalresearch.Thecenterintroducessolutionstokeybiomedical informatics challenges such as big data organization, storage, processing, distribution, and sharing data across collaborative networks. All BDDS developments aim for interaction of basic science, biological and engineering researchers using vast data collections and distant computers and storage systems to explore, interact and understand what the data mean and to derive knowledgefromthem. This tutorial will describe and demonstrate the technologies that we are developing for addressing the complexity, scalability of analysis,andeaseofinteractionwithbigdataandassociatedanalyticmethods.ParticipantswilllearnhowBDDSresearchersapply thesetoolstoprocessgenomic,imaging,andotherdatafromtensofthousandsofpatients,andwillgaintheknowledgerequiredto takethesetoolsbacktotheirinstitutionsandapplythemtotheirownbigdataproblems.Inthistutorial,attendeeswillbeableto discover datasets of interest from public data repositories such as ENCODE, SRA, generate easily exchangeable BDBags of raw datasets,generateuniquepermanentidentifierswithmetadata,transferthedatasetsbyleveraginghighperformancedatatransfer services to cloud-based BDDS Globus Galaxy service. Using BDDS Galaxy, attendees can interactively analyze data or run existing large-scaleoptimizedworkflowsforgeneexpressionandtranscriptomicregulatorynetworks. LearningObjective1:Attendeeswillunderstandwhatspecificbigdataanalysistechnologiescanbeapplied,inanintegratedway,to addresstheirparticularclinical,imagingandgeneticsdataanalysisneedsandthatcouldnotbeachievedbeforewiththepriorstate oftheart. 19 Learning Objective 2: Attendees will learn how to use and further explore robust data analysis tools in the areas of clinical data analysis,proteinfunctionanalysis,andgeneticanalysis. TutorialContent:InBDDS,wearedevelopingtechnologiesthatenablesrapiddiscoveryinthefieldofbiomedicine.Specifically,we are developing tools and services that enables discovery, exchange, identification, large-scale analysis and publication of big biomedicaldata. Thistutorialwillbehandsonandattendeesareexpectedtobringalaptop. T4:DeepLearningforBioinformaticsandHealthInformatics SungrohYoon,SeoulNationalUniversity Abstract:Inthiseraofbigdata,transformationofbiomedicalbigdataintovaluableknowledgehasbeenoneofthemostimportant problemsinbioinformatics.Meanwhile,deeplearninghasadvancedrapidlysincetheearly2000s,andnowdemonstratesstate-ofthe-art performance in various fields. Accordingly, the application of deep learning in bioinformatics to gain insight from data is emphasizedbothinacademiaandindustry.Thistutorialwillreviewdeeplearninginthebioinformaticsandpresentsexamplesof current research. To provide a useful and comprehensive perspective, the presenter will categorize related research both by bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e., deep neuralnetworks,convolutionalneuralnetworks,recurrentneuralnetworks,emergentarchitectures)andpresentbriefdescriptions of each study. Additionally, there will be discussion on theoretical and practical issues of deep learning in bioinformatics and suggestionsforfutureresearchdirections.Thistutorialwillprovidevaluableinsightandserveasastartingpointforresearchersto applydeeplearningapproachesintheirbioinformaticsstudies. T5:Data-DrivenAnalysisofUntargetedMetabolomicsDatasets SohaHassoun,TuftsUniversity Abstract:Metabolomicsisanexpandingfieldof‘omics’researchconcernedwiththecharacterizationofsmallmoleculemetabolites inbiologicalsystems.Owingtorecenttechnologicaladvancesinmassspectrometry,itisnowpossibletosimultaneouslydetectinan untargeted fashion a very large number of metabolites covering a substantial fraction of metabolites in a biological sample. This presents an exciting opportunity to develop potentially transformative data-driven approaches to study and manipulate cells and organisms.Amajorchallengeinrealizingmetabolomics’richpotentialisinanalyzingcollecteddata.Inthistutorial,wereviewrecent computational techniques for automated assignment of chemical identities to spectral data collected through metabolomics. The tutorialwillbeginwithanoverviewoftandemmassspectrometryplatformsandavailabledatabasesthatcataloguespectraldata. The tutorial will then cover recent metabolite identification techniques including those based on biochemical transformation analysis, metabolite fragmentation, and statistical methods including overrepresentation, pathway enrichment analysis, and inference.Thetutorialconcludesbyoutliningchallengesandresearchopportunitiesinmetabolomics.Thistutorialwillbebeneficial for researchers in systems biology, and those interested in integrating metabolomics with other ‘omics’ data and in tackling challengesenabledbynovelmassspectrometrycollectionplatforms. T6:EvolutionaryAlgorithmsforProteinStructureModeling EmmanuelSapin,AmardaShehu,andKennethDeJong,GeorgeMasonUniversity Abstract: In the last two decades, great progress has been made in molecular modeling through computational treatments of biological molecules grounded in evolutionary search techniques. Evolutionary algorithms (EAs) are gaining popularity beyond exploringtherelationshipbetweensequenceandfunctioninbiomolecules.Inparticular,recentworkisshowingthepromiseofEAs inexploringstructurespacesofproteins,suchasdenovostructurepredictionandotherstructuremodelingproblems.Theobjective of this tutorial is to introduce the Bioinformatics and Computational Biology, and Health Informatics community to the rapid developments on EA-based frameworks for protein structure modeling through a concise but comprehensive review of developmentsinthisdirectionoverthelastdecade.Thereviewwillbeaccompaniedwithspecificdetailedhighlightsandinteractive software demonstrations of representative methods. The tutorial will introduce BCB researchers to solving open problems in computationalstructuralbiologyusingpowerfulevolutionarysearchtechniques. T7:TheISBCancerGenomicsCloud SheilaM.Reynolds,InstituteforSystemsBiology Abstract:TheISBCancerGenomicsCloud(ISB-CGC)isoneofthreepilotprojectsfundedbytheNationalCancerInstitutewiththe goal of democratizing access to The Cancer Genome Atlas (TCGA) data by substantially lowering the barriers to accessing and 20 computingoverthisrichdataset.TheISB-CGCisacloud-basedplatformthatservesasalarge-scaledatarepositoryforTCGAdata, while also providing the computational infrastructure and interactive exploratory tools necessary to carry out cancer genomics researchatunprecedentedscales.TheISB-CGCfacilitatescollaborativeresearchbyallowingscientiststosharedata,analyses,and insights in a cloud environment. Tools, data, and resources that make up the ISB-CGC platform include an interactive web application,dataleveragingvariousGoogleCloudtechnologiessuchasCloudStorage,BigQueryandGoogleGenomics,andopensourcecodeexamples.TheISB-CGCteamincludesscientistsandengineersfromtheInstituteforSystemsBiology(ISB),Google,and CSRA. T8:LivingtheDREAM:Crowdsourcingbiomedicalresearchthroughchallengesandensembles GauravPandeyandRobertVogel,IcahnSchoolofMedicineatMountSinai LaraMangraviteandSolveigSieberts,SageBionetworks GustavoStolovitzky,IBMResearch Abstract: The explosion in the scale, variety and complexity of biomedical datasets has necessitated an almost parallel growth of advanced computational methods that can produce actionable knowledge from these datasets. This growth has led to a new approach for addressing complex biomedical problems, namely the organization of unbiased crowdsourcing-based science competitions/challenges. DREAM Challenges, the most prominent and comprehensive effort in this direction, engage diversecommunitiesofexpertstoleveragethe“wisdomofcrowds”tosolvespecificbiomedicalproblemswithinfixedtimeperiods. DREAMorganizershavelaunchedover35successfulchallenges,whichhaveattractedover8,000participantsandresultedinover 100publicationsusingDREAMdata.Thefirstpartofourtutorialwilldescribethemotivation,designandscientificimpactofDREAM challenges. The participation of a large diverse community of experts in DREAM challenges offers a promising opportunity to develop/learn challenge “ensembles” that automatically and effectively assimilate the rich knowledge embedded in the diverse submissions made to the challenges. This diversity among the submissions calls for the development of novel heterogeneous ensemblelearningmethods,whichwillbethefocusofthesecondpartofthetutorial. Posters 1. NoaRappaport,MichalTwik,RonNudel,InbarPlaschkes,TsippiInyStein,DanitOz-Levi,SimonFishilevich,MarilynSafran, DoronLancet.IntegratedIdentificationofDisease-GeneLinksandtheirUtilityinNext-GenerationSequencing Interpretation 2. OmidGhiasvand,MaryShimoyama.IntroducingaTextAnnotationTool(OntoMate),AssistingCurationatRatGenome Database 3. Yoo-AhKim,SannaMadan,TeresaPrzytycka.WeSME:uncoveringmutualexclusivityofcancermutations 4. IlyaZhbannikov,KonstantinArbeev,AnatoliyYashin.MultidimensionalStochasticProcessModelanditsApplicationsto AnalysisofLongitudinalDatawithGeneticInformation 5. ThomasHahn,HidayatRahman,RichardSegall.AdvancedFeature-DrivenDiseaseNamedEntityRecognitionUsing ConditionalRandomFields 6. EunjiKim,IvanIvanov,JianpingHua,RobertS.Chapkin,EdwardR.Dougherty.Model-basedstudyoftheEffectivenessof ReportingListsofSmallFeatureSetsusingRNA-SeqData 7. HasiniYatawatte,ChristianPoellabauer,SusanLatham.AutomatedCaptureofNaturalisticChildVocalizationsforHealth Research 8. ManalAlshehri,ImanRezaeian,AbedAlkhateeb,LuisRueda.AMachineLearningModelforDiscoveryofProteinIsoforms asBiomarkers. 9. SomyungOh,JeonghyeonHa,KyungwonLee,SejongOh.IntegratedVisualizationToolforDifferentiallyExpressedGenes andGeneOntologyAnalysis 10. JaniquePeyper,NaomiWalker,RobertWilkinson,GraemeMeintjes,JonathanBlackburn.TheTB-IRISneutrophilproteome: bioinformaticchallenges 11. RichardTillquist,ManuelLladser.Metric-spacePositioningSystems(MPS)forMachineLearning 12. ByunggilYoo,NeilMiller,GreysonTwist,ShaneCorder.TheCMHWarehouse-ACatalogofGeneticVariationinPatientsof aChildren'sHospital 13. SalvadorEugenioCaoili.KineticandAffinityConstraintsonReactionsBetweenAntihaptenAntibodiesandNonpeptidicBCellEpitopes:ImplicationsforPredictingAntibody-MediatedModulationofPharmacokineticsandPharmacodynamics 14. TaeinKwon,EunjeongPark,HyukjaeChang.SmartRefrigeratorforHealthcareUsingFoodImageClassification 21 15. MethunKamruzzaman,AnanthKalyanaraman,BalaKrishnamoorthy.CharacterizingtheRoleofEnvironmentonPhenotypic TraitsusingTopologicalDataAnalysis 16. SurabhiAgrawal,ChunPanHon,SwatiGarg,AadarshSampath,ShanuSushmita,MartineDeCock.SequenceBased PredictionofHospitalReadmissions 17. ChunPanHon,MayanaPereira,ShanuSushmita,AnkurTeredesai,MartineDeCock.RiskStratificationforHospital ReadmissionofHeartFailurePatients:AMachineLearningApproach 18. NickThieme,KristinBennett.TimetoReactivationofLatentTuberculosisInfectionVariesbyLineage 19. MuhammadArifurRahman,NeilLawrence.AGaussianProcessModelforInferringtheDynamicTranscriptionFactor Activity 20. FaizyAhsan,DoinaPrecup,MathieuBlanchette.PredictionofCellTypeSpecificTranscriptionFactorBindingSiteOccupancy 21. AmeliaBateman,ToddJ.Treangen,MihaiPop.LimitationsofCurrentApproachesforReference-Free,Graph-BasedVariant Detection 22. PeterZ.Revesz.ALastGeneticContactTreeGenerationAlgorithmforaSetofHumanPopulations 23. BarneyPotter,JamesFix,AnnaRitz.ModelingCellSignalingNetworkswithPrize-CollectingSubhypernetworks 24. KarlMenzel,SuzyC.P.Renn,AnnaRitz.CopyNumberVariationandAdaptiveEvolutionaryRadiationsacrosstheAfrican Cichlidphylogeny 25. TingWang,RichardH.Duerr,WeiChen.AnintegrativeanalysisofATAC-seqandRNA-seqdatainactivated, CD4+CD45RO+CD196+humanTcellstreatedwithIL-1BandIL-23withorwithoutPGE2 26. ClaudioDaza,JosefaSantaMaria,IgnacioGomez,MarioBarbe,JavierTrincado,DanielCapurro.PhenotypingIntensiveCare UnitPatientsUsingTemporalAbstractionsandTemporalPatternMatching 27. DanDeblasio,JohnKececioglu.AdaptiveLocalRealignmentviaParameterAdvising 28. ImanMohammadi,SeyedsasanHashemikhabir,TammyToscos,HuanmeiWu.HealthCareNeedsofUnderserved PopulationsintheCityofIndianapolis 29. NicoleEzell,AnnaRitz.ReconstructingNeuronalSignalingPathwaysWiththePotentialforDisruptioninSchizophrenia 30. MohammadShahrokhEsfahani,AaronNewman,HenningStehr,FlorianScherer,JacobChabon,DavidKurtz,Robert Tibshirani,MaximilianDiehn,AshAlizadeh.NoninvasiveCancerClassificationUsingDiverseGenomicFeaturesinCirculating TumorDNA 31. NaveenaYanamala,LindseyBishop,VamsiKodali,PattiZeidler-Erdely,AaronErdely.Machinelearningtechniquespredict andcharacterizetoxicitybetweendifferentmulti-walledcarbonnanotubes 32. HuananZhang,DavidRoe,RuiKuang.DetectingPopulation-differentiationCNVsinHumanPopulationTreebySparseGroup Selection 33. JulienHerrmann,ZacharyWitter,NakulPatel,JonathanKho,DanielJanies,ÜmitV.Çatalyürek.Visualanalyticsonthe spreadofpathogens 34. MarziehAyati,DanicaWiredja,DanielaSchlatzer,GouthamNarla,MarkRChance,MehmetKoyuturk.MoBaSon PhosphorylationData 35. NeginBagherzadi,AlpOzgunBorcek,GulTokdemir,NergizCagiltay,HakanMaras.Analysisofneurooncologicaldatato predictsuccessofoperationthroughclassification 22 ProgramCommittee NancyAmato,TexasA&MUniversity RolfBackofen,UniversityofFreiburg ChrisBailey-Kellogg,DartmouthCollege AsaBen-Hur,ColoradoStateUniversity CatherineBlake,Univ.ofIllinois,Urbana-Champaign ChristinaBoucher,ColoradoStateUniversity BethBritt,UniversityofWashington DanielBrown,UniversityofWaterloo YangCao,VirginiaTech JohnChelico,NewYorkUniversity BrianY.Chen,LehighUniversity JakeChen,IndianaUniv.-PurdueUniv.Indianapolis YiChen,NewJerseyInstituteofTechnology JianlinJackCheng,UniversityofMissouri Chih-LinChi,UniversityofMinnesota A.ErcumentCicek,BilkentUniversity MarkClement,BrighamYoungUniversity TrevorCohen,UniversityofTexas,Houston CarloCombi,UniversityofVerona HectorCorradoBravo,Univ.ofMaryland,CollegePark LenoreCowen,TuftsUniversity BhaskarDasgupda,UniversityofIllinoisatChicago PeterElkin,UniversityatBuffalo EmreErtin,TheOhioStateUniversity OliverEulenstein,IowaStateUniversity JeffFerraro,TheUniversityofUtah TerryGaasterland,UniversityofCalifornia,SanDiego AndrewGentles,StanfordUniversity AnanthGrama,PurdueUniversity EricHall,CincinnatiChildren'sHospital NuritHaspel,UniversityofMassachusetts,Boston LenwoodHeath,VirginiaTech VasantHonavar,PennsylvaniaStateUniversity FereydounHormozdiari,UniversityofCalifornia,Davis FilipJagodzinski,WesternWashingtonUniversity XiaoqianJiang,UniversityofCalifornia,SanDiego TamerKahveci,UniversityofFlorida AnanthKalyanaraman,WashingtonStateUniversity SreeramKannan,UniversityofWashington JohnKececioglu,Co-Chair,UniversityofArizona ZiaKhan,UniversityofMaryland,CollegePark MehmetKoyuturk,CaseWesternReserveUniversity AlbertLai,TheOhioStateUniversity Su-InLee,UniversityofWashington Hans-PeterLenhof,SaarlandUniversity JingLi,CaseWesternReserveUniversity HongfangLiu,MayoClinic StefanoLonardi,UniversityofCalifornia,Riverside ZhiyongLu,NationalInstitutesofHealth HuiLu,UniversityofIllinoisatChicago ShaunMahony,PennStateUniversity BradMalin,VanderbiltUniversity RamgopalMettu,TulaneUniversity TijanaMilenkovic,UniversityofNotreDame T.M.Murali,VirginiaTech ChadMyers,UniversityofMinnesota LuayNakhleh,RiceUniversity ScottNarus,TheUniversityofUtah WilliamStaffordNoble,UniversityofWashington LaxmiParida,IBMTJWatsonResearchCenter MihaiPop,UniversityofMaryland GiuseppePozzi,PolitecnicodiMilano TeresaPrzytycka,NationalInstitutesofHealth PredragRadivojac,IndianaUniversity SusanRea,IntermountainHealthcare AnnaRitz,ReedCollege LarryRuzzo,UniversityofWashington FarrantSakaguchi,TheUniversityofUtah HarmScherpbier,JeffersonCollege RussellSchwartz,CarnegieMellonUniversity SoumitraSengupta,ColumbiaUniversity AmardaShehu,GeorgeMasonUniversity XinghuaShi,UniversityofNorthCarolinaatCharlotte MonaSingh,PrincetonUniversity KristerSwenson,CNRS,UniversitédeMontpellier JijunTang,UniversityofSouthCarolina HaixuTang,IndianaUniversity NurcanTuncbag,MassachusettsInstituteofTechnology JasonWang,NewJerseyInstituteofTechnology NicoleWeiskopf,OregonHealth&ScienceUniversity ChunhuaWeng,ColumbiaUniversity TravisWheeler,UniversityofMontana AdamWilcox,Co-Chair,UniversityofWashington AdamWright,BrighamandWomen'sHospital JinboXu,ToyotaTechnologicalInstituteatChicago NaveenaYanamala,CentersforDiseaseControland Prevention RuiZhang,UniversityofMinnesota AidongZhang,Univ.atBuffalo,StateUniv.ofNewYork MiZhang,MichiganStateUniversity LiqingZhang,VirginiaTech JieZhang,TheOhioStateUniversity LiZhou,PartnersHealthcare BinhaiZhu,MontanaStateUniversity JaroslawZola,Univ.atBuffalo,StateUniv.ofNewYork 23