Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C2 Chapter 10 Solutions Resource sheet 1 1. i. a. sin 90  1  c. sin 45   a  4 1 2  2 2 e. sin 0  0  2. i. 4 2 0 2 Special angles: b. sin 60   a  2 d. sin 30   a  0 3 2  a  3 1 1   a  1 2 2 (5) opp a adj a  cos    hyp c hyp c Hence cos   sin  , as required. sin   [5] (1) (1) ii. Using the triangle (which exists for 0    90 )     90    90   Since cos   sin  , it follows that cos  90     sin  (1) cos  90     sin  is also true when   0 or 90 since cos 90  sin 0  0 and cos 0  sin 90  1 (2) a b , tan  90     tan   b a b a Hence tan  90    tan     1 as required. a b for all angles 0    90 . iii. Using the triangle, tan   (2) (1) When   0 or   90 , one of the terms in the product tan  90    tan  is undefined. (2) 3. i. sin 30  4 cos 60  1 1 5  4  2 2 2 (3) 2  3 1 ii. 2sin 60  cos 60  2     2  2 3 1   1 2 2 2 iii. 5 tan 60 cos 30  5 3  3 15  2 2 (1) (2) (3) [10] 1   1 iv.  sin 45  cos 45      2  2 2 2 (1) 2  2    2  2 v.  sin 60  3cos 30  2  3 3    3  2   2   2 3 vi. (2)  2 2 (1)  12 (2) 3 3 1  2 sin 45  1  2  tan 30 2 3 (1)  3 1  2 4. i. a tan 30  tan 45  a  (2) tan 45 1  1 tan 30   [18] (1) 3  a 3 ii. a 2 tan 30    3  2 1 3 3  3 3 tan 60  3 Hence a 2 tan 30  tan 60 , as required.  3  1 3 1  3 3 3 3 iii. a3 tan 30  (1) (1) (1) (1) 3 (1) (1) [7] C2 Chapter 10 graphs: Resource sheet 5 More trigonometrical Solutions 1. i. y y  sin 3 x 1 O 60  360  120  x -1 (2) ii. a. sin3x  0 for 0  x  360 has solution x  60 , 120 ,180, 240, 300 (2) b. sin 3x  1 for 0  x  360 has solution x  30 , 150 , 270 [Accept any method e.g. by a substitution] 2. i. Stretch along the x-axis scale factor 1 2 0.5 (2) (2) ii. y y  cos x O 360  x y  cos  0.5x  iii. 3. i. x  240  cos x  0.5 , cos  0.5x   0.5 (2) Hence the graphs intersect at  240 ,  0.5 , as required. (1) From the sketch over the range 0  x  360 , cos x  cos0.5x  240  x  360 Hence the solution to the inequality is 240  x  360 (2) sin  cos   2sin  cos   sin   0 2sin   tan   2sin    sin   2cos 1  0 (1) [6]  sin   0 or cos   Hence   0 , 60 ,180 1 2 (2) (2) ii. y  60 , 3  y  2sin  2 O 90  x 180 ,0 y  tan  (3) 4. i. y y  sin 4 x 1 O 90  x -1 (2) ii. The line y  k intersects the graph y  sin 4 x in exactly two places for only. k  1 (2) C2 Chapter 10 equations Resource sheet 2 Solution of trigonometric 70 solutions 1. Using appropriate graphs or any other method: i. sin x  0  x  0, 180 , 360 (2) ii. cos x  0  x  90 , 270 iii. 2sin x  1  sin x  (2) 1  x  30 , 150 2 iv. 3tan x  3  tan x  3 1  3 3  x  30 , 210 (2) 12 3  4 2 v. 4 cos x  12  cos x   x  30 , 330 vi. 2 3 sin x  3  sin x  (2) 3 2 3  (2) 3 2  x  60 , 120 2. Answers are given to one decimal place. i. tan x  4  x  104.0 , 76.0 3 4  x  48.6 , 131.4 (2) [12] (2) ii. 4sin x  3  sin x  4 5 x  36.9 (2) iii. 5cos x  1  3  cos x  iv. 1 tan x  1  0  tan x  2 2  x  63.4 , 116.6 (2) (2) [8] 3. i. sin 2   cos2   1  sin    1  cos2  Hence sin    1    54   9 25  (1) 2 3 5 Since 90    180 , sin   0 and so sin   (2) 3 , as required. 5 3  sin  3 5 ii. tan    4  . cos    5  4 4. i. 1 2    30 ,  150 (1) (2) [6] sin 2   0.25  sin    1 3    30 ,  150 (4) ii. 3tan 2   1  tan    iii. (4) 1 1  2  cos    2 cos  2    45 ,  135 5. 2cos2   cos 1  0   2cos 1 cos  1  0 1 , 1 2    60 ,180 ,300  cos   6. i. Replacing cos 2  with 1  sin 2  results in 2sin 2   3sin   1  0 2sin 2   3sin   1  0   2sin  1sin  1  0 1  sin   , 1 2    30 , 90 , 150 ii. Replacing sin 2  with 1  cos 2  results in 5cos 2   8cos   4  0 (4) [12] (1) (1) (2) (2) (1) (1) (2) (2) [4] 5cos2   8cos  4  0  5cos  2 cos  2  0 2 ,  2   no real values  5    66.4 , 293.6 (1 decimal place) sin  3 3   tan   iii. 2sin   3cos   cos  2 2  cos      56.3 , 236.3 (1 decimal place) iv. 2 tan   1 1  0  2 tan    2 cos  2 cos   cos   sin  1  cos  4  sin    1 4    194.5 , 345.5 v. 2 tan   3 sin  3 0  2  sin  cos  sin   2sin 2   3cos   0 (1) (1) (2) (2) (1) (1) (1) (1) (2) (1) (1) Replacing sin 2  with 1  cos 2  results in 2 cos 2   3cos   2  0 (2) 2cos2   3cos  2  0   2cos   1 cos   2   0 (1) 1 , 2   no real values  2    120 , 240 (1 decimal place)  cos    (1) (2) [28] C2 Chapter 10 angles: Resource sheet 3 Triangles without right 20 Solutions 1. i. x 12  sin130 sin 25 12  sin130  21.75... sin 25 (2)  x  21.8 cm (1 decimal place) (1)  x ii. The missing angle  180   78  37  65 Hence x 19 19   x  sin 65  17.60.. sin 65 sin 78 sin 78  x  17.6 mm (1 decimal place) (1) (2) (1) [7] 2. i. sin120  sin 180 120  sin 60  ii. Area  3 2 1 1 ab sin C  16  5  sin120 2 2 3  40   20 3 cm2 , as required. 2 iii. a. AB 2  52  162  2  5 16  cos120  361 Hence AB  361  19 cm, as required. b. 52  192  162  2 19 16  cos  192  162  52  cos    0.9736.... 2 19 16    cos1  0.9736...  13.17...  13 (nearest whole degree) iv. a. The angle of CB against the North line is 120  90  30 Hence the bearing of B from C is 030 b. The angle of BA against the North line is 180  30  13  223 Hence the bearing of A from B is 223 (nearest whole degree) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) [13] C2 Chapter 10 Resource sheet 4 2  120 3 Circular measure: Solutions c 1. i. ii. 5 c   112.5 8 iv. 1  28.6 (1 decimal place) 2 c iii. 2.3c  131.8 (1 decimal place) 2. i. 2 40   c 9 iii. 220  (4) 3 ii. 135   c 4 11 c  9 iv. 12.5  5 c  72 3. i. arc length AB  r  0.8  8  6.4 cm, as required. ii. Perimeter = (arc length AB) + BC + CA (4) (1) (1)  6.4  2  8  36.10...  36.1 cm (1 decimal place) (1) iii. Triangle ABC is isosceles with equal angles  at A and B A  C 0.8  B Hence 2  0.8      0.2  0.1 2 (2) 20 4. i. A 1 2 1 r    92    56.7 2 2    1.4c , as required. Area of ABC  Hence (2) 1 2 1 r sin    92  sin1.4 2 2  39.910... cm2 (1) Area ABC 39.910...   0.70389...  70% , as required. Sector area 56.7 (1) ii. AB 2  92  92  2  9  9  cos1.4  134.46... Hence AB  134.46...  11.59  11.6 cm (1 decimal place) [Accept alternative method e.g. using the fact triangle ABC is isosceles] (1) (1) (1)