* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Quantum entanglement, topological order, and tensor category theory
Wave–particle duality wikipedia , lookup
Basil Hiley wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Probability amplitude wikipedia , lookup
Measurement in quantum mechanics wikipedia , lookup
Double-slit experiment wikipedia , lookup
Renormalization wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Renormalization group wikipedia , lookup
Particle in a box wikipedia , lookup
Density matrix wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Copenhagen interpretation wikipedia , lookup
Bell test experiments wikipedia , lookup
Quantum decoherence wikipedia , lookup
Hydrogen atom wikipedia , lookup
Quantum dot wikipedia , lookup
Quantum field theory wikipedia , lookup
Coherent states wikipedia , lookup
Delayed choice quantum eraser wikipedia , lookup
Path integral formulation wikipedia , lookup
Scalar field theory wikipedia , lookup
Quantum fiction wikipedia , lookup
Many-worlds interpretation wikipedia , lookup
Bell's theorem wikipedia , lookup
Quantum computing wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum machine learning wikipedia , lookup
History of quantum field theory wikipedia , lookup
Quantum key distribution wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Quantum state wikipedia , lookup
Canonical quantization wikipedia , lookup
Quantum teleportation wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Quantum group wikipedia , lookup
Quantum entanglement, topological order,
and tensor category theory
Xiao-Gang Wen, Perimeter/MIT
ESI, Vienna, Aug., 2014
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Local unitary trans. defines gapped quantum phases
Two gapped states, |Ψ(0)� and |Ψ(1)� (or more precisely, two
ground state subspaces), are in the same phase iff they are related
�
through a local unitary (LU)� evolution
�1 �
�
|Ψ(1)� = P e − i 0 dg H(g ) |Ψ(0)�
�
where H(g ) = i Oi (g ) and Oi (g ) are local hermitian operators.
Hastings, Wen 05; Bravyi, Hastings, Michalakis 10
• LU evolution =�local unitary
transformation:
�
�1
|Ψ(1)� = P e − i T 0 dg H(g ) |Ψ(0)�
=
|Ψ(0)�
ground−state
subspace
Δ −>finite gap
ε −> 0
• The local unitary transformations define an equivalence relation:
Two gapped states related by a local unitary transformation are in
the same phase.
A gapped quantum phase is an equivalence class of local
unitary transformations – a conjecture.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
A gapped quantum liquid phase:
• A gapped quantum phase:
ψN1 ψN2 ψN3 ψN4
HN1 , HN2 , HN3 , HN4 , · · ·
LU
LU
LU
LU
HN� 1 , HN� 2 , HN� 3 , HN� 4 , · · ·
ψN’1 ψN’2 ψN’3 ψN’4
Ni+1 = sNi , s ∼ 2
gLU
gLU
gLU
• A gapped quantum liquid phase:
ψN1 ψN2 ψN3 ψN4
HN1 , HN2 , HN3 , HN4 , · · ·
LU
LU
LU
LU
HN� 1 , HN� 2 , HN� 3 , HN� 4 , · · ·
ψN’1 ψN’2 ψN’3 ψN’4
Nk+1 = sNk , s ∼ 2
Generalized local unitary (gLU) trans.
Nk
ground−state
subspace
Δ −>finite gap
ε −> 0
Nk+1
Nk
gLU
LU
• 3+1D toric code model → a 3+1D gaped quantum liquid.
• Stacking 2+1D FQH states and Haah cubic model → gapped
quantum state, but not liquids.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Bosonic/fermionic gapped quantum phases
Both local bosonic and fermionic systems have the following local
property: Vtot = ⊗i Vi
|Ψ(1)� =
|Ψ(0)�
• Bosonic gapped phases�are the equivalent classes of LU
transformation: LU = Uijk , which acts within Vi ⊗ Vj ⊗ Vk , and
[Uijk , Ui � j � k � ] = 0, e.g. Uijk = e
i(bi bj bk† +h.c.)
• Fermionic gapped phases
� aref the equivalent classes of fermionic LU
transformation: fLU = Uijk , which does not act within
Vi ⊗ Vj ⊗ Vk , but
f , Uf
[Uijk
i �j �k � ]
= 0, e.g.
f
Uijk
=e
i(ci cj ck† ck +h.c.)
Gapped quantum liquids for bosons and fermions have very
different mathematical structures
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
• Thinking about entanglement: Chen-Gu-Wen 2010
- There are long range entangled (LRE) states
- There are short range entangled (SRE) states
|LRE� �=
|product state� = |SRE�
local unitary
transformation
LRE
state
SRE
product
state
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
• Thinking about entanglement: Chen-Gu-Wen 2010
- There are long range entangled (LRE) states → many phases
- There are short range entangled (SRE) states → one phase
|LRE� �=
local unitary
transformation
LRE
state
SRE
product
state
|product state� = |SRE� g2
local unitary
transformation
SRE
SRE
product product
state
state
topological order
LRE 1
LRE 2
local unitary
transformation
LRE 1
LRE 2
SRE
phase
transition
g1
• All SRE states belong to the same trivial phase
• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.
= different topological orders Wen 1989
→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → more entangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
• Particle condensation
(superfluid)
�
�
�
�
|ΦSF � = all conf. �
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
• Particle condensation
(superfluid)
�
�
�
�
= (|0�x1 + |1�x1 + ..) ⊗ (|0�x2 + |1�x2 + ..)...
|ΦSF � = all conf. �
= direct-product state → unentangled state (classical)
- Superfluid, as an exemplary quantum state of matter, is actually
very classical and unquantum from entanglement point of view.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Scramble the phase: local rule → global dancing pattern
ΦSF ({z1 , ..., zN }) = 1 → unentangled product state
• Local dancing rules of a FQH liquid:
(1) every electron dances around clock-wise
(ΦFQH only depends on z = x + iy )
(2) takes exactly three steps to go around any others
(ΦFQH ’s phase change 6π)
�
→ Global dancing pattern ΦFQH ({z1 , ..., zN }) = (zi − zj )3
• A general theory of multi-layer Abelian FQH state:
�
�
1 �
I
I KII
I
J KIJ − 4 i,I |ziI |2
(zi − zj )
(zi − zj ) e
I ;i<j
I <J;i,j
Low energy effective theory is the K -matrix
Chern-Simons theory L = K4πIJ aI daJ
• An integer number of edge modes c = dim(K ) = number of layers.
Even K -matrix classifies all 2+1D Abelian topological order
(but not one-to-one)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
• A systematic theory of single-layer non-Ableian FQH state:
Pattern of zeros Sa :
a-electron cluster has a relative angular momentum Sa Wen-Wang 08
S2 = 3
S2 = 1
S3 = 9
S3 = 5
S4 = 18
S4 = 10
ν=1/3 Laughlin
ν=1/2 Pfaffian
• Local dancing rules are enforced by Hamiltonian to lower energy.
• Only certain sequences Sa correspond to valid FQH states. Which?
• Different POZ Sa give rise to different topological properties
• A fractional number of edge modes c �= integer.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset of product states
To make topological order, we need to sum over many different
product
states, but we should not sum over everything.
�
all spin config. | ↑↓ ..� = | →→ ..�
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset of product states
To make topological order, we need to sum over many different
product
states, but we should not sum over everything.
�
all spin config. | ↑↓ ..� = | →→ ..�
• sum over a subset of spin config.:
�
�
�
�
2
|ΦZloops
�=
�
�
�
�
# of loops �
|ΦDS
�
=
(−)
�
loops
• Can the above wavefunction
be the ground states of
local Hamiltonians?
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset: local rule → global dancing pattern
2D
3D
• Local dancing rules of a string liquid:
(1) Dance
� while
� holding
� hands
� (no�open ends)
�
�
= Φstr
, Φstr
= Φstr
(2) Φstr
�
�
→ Global dancing pattern Φstr
=1
• Local dancing rules of another string liquid:
(1) Dance
� while
� holding
� hands
� (no�open ends)
�
�
= Φstr
, Φstr
= −Φstr
(2) Φstr
�
�
→ Global dancing pattern Φstr
= (−)# of loops
�
�
• Two string-net condensations → two topological orders: Levin-Wen 05
Z2 topo. order Sachdev Read 91, Wen 91 and double-semion topo. order.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category