Download Answer the following

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
DON BOSCO SCHOOL, ALAKNANDA : CLASS XI - Assignment
CHAPTER 3 – TRIGONOMETRIC FUNCTIONS
Answer the following:
1. Find the value of
cos(2πœ‹+πœƒ)π‘π‘œπ‘ π‘’π‘(2πœ‹βˆ’πœƒ)tan⁑(
3πœ‹
+πœƒ)
2
9πœ‹
sec( 2 +πœƒ) cos(4πœ‹βˆ’πœƒ)cot⁑(3πœ‹βˆ’πœƒ)
2. Evaluate cos 15o –sin 15o
3. If cosΞ± =
13
14
1
Ο€
7
3
⁑and⁑cosΞ² = where Ξ± and Ξ² are acute angles, show that Ξ± βˆ’ Ξ² =
4. The circular measures of two angles of a triangle are ½ and 1/3 , find the third angle in
[ ans : 132o 16’ 22’’ ]
English system
5. A circular wire of radius 3 cm is cut and bent so as to lie along a circle of radius 48cm.
Find the angle subtended by the wire at the centre of the circle [ans : 22.5o]
[ ans: 100o]
6. Find the angle between the hands of a clock at 7:20 P.M.
7. If tan π‘₯ =⁑
π‘š
π‘šβˆ’1
π‘Žπ‘›π‘‘ tan 𝑦 =⁑
1
2π‘šβˆ’1
, π‘π‘Ÿπ‘œπ‘£π‘’β‘π‘‘β„Žπ‘Žπ‘‘β‘π‘₯ βˆ’ 𝑦 =
πœ‹
4
8. If sec x + tan x = 4 , find sin x and cos x. Also find the quadrant in which x lies.
[ ans : sin x = 15/17 , cos x == 8/17 , First ]
9. If 𝑠𝑖𝑛𝛼 + sin 𝛽 = π‘Ž, π‘π‘œπ‘ π›Ό + cos 𝛽 = 𝑏, π‘π‘Ÿπ‘œπ‘£π‘’β‘π‘‘β„Žπ‘Žπ‘‘ ⁑⁑⁑sin(𝛼 + 𝛽) =
π‘Žπ‘›π‘‘ cos(𝛼 + 𝛽) =
𝑏2 βˆ’π‘Ž2
𝑏2 βˆ’π‘Ž2
10. If tan A + cot A = 2, then find tan100A + cot100A
11. Prove that
cos2xcos3xβˆ’cos2xcos7x+cosx⁑cos10x
sin4xsin3xβˆ’sin2xsin5x+sin4xsin7x
12. Prove that tan
13. Prove that cos
πœ‹
20
2πœ‹
7
tan
3πœ‹
20
+cos
tan
4πœ‹
7
5πœ‹
20
tan
+cos
7πœ‹
20
6πœ‹
7
tan
=βˆ’
1
2
9πœ‹
20
[ans : 2 ]
= π‘π‘œπ‘‘6π‘₯π‘π‘œπ‘‘5π‘₯
=1
2π‘Žπ‘
π‘Ž2 +𝑏2⁑
14. Prove that sin 10 o sin 50o sin 70 o =
1
8
15. Prove that cos10o cos 30o cos 50o cos 70 o =
16.Prove that
sin⁑(π΅βˆ’πΆ)
π‘π‘œπ‘ π΅π‘π‘œπ‘ πΆ
17.If cosx +cosy =
18.Prove that
19.Prove that
+
1
2
sin⁑(πΆβˆ’π΄)
π‘π‘œπ‘ πΆπ‘π‘œπ‘ π΄
+
sin⁑(π΄βˆ’π΅)
=0
π‘π‘œπ‘ π΄π‘π‘œπ‘ π΅
and sinx+siny =
1
4
3
16
π‘₯+𝑦
π‘π‘Ÿπ‘œπ‘£π‘’β‘π‘‘β„Žπ‘Žπ‘‘ tan(
2
1
) =⁑2
√2 + √2 + √2 + 2π‘π‘œπ‘ 8π‘₯ = 2π‘π‘œπ‘ π‘₯
sinx+sin2x
1+cosx+cos2x
= tanx
20.Prove that cos 5x = 16cos 5 x -20 cos 3 x +5cosx
21.Solve the equation cosx + sin x = cos2x + sin2x
22.Find all values of A between 0o and 720o which satisfy the equation
2 cos2A -5cosA + 2 = 0
[ans : 60 o, 300 o, 420 o, 660 o]
π‘₯
π‘₯
βˆ’3
⁑2
2
5
23.Find the value of sin2x, sin , cos2x, cos if, cos x =
24.Find the principal and general solution of
(a) 2sinx + 1 = 0
(b) sin x + cos x=0
25.Find the general solutions for the following
a) sin 2x + sin4x + sin6x = 0
b) 2cos2x + 3sinx = 0
c) cos x + cos3x = 2 - 4sin2x
d) cos x – sin x =
1
√2
e) √2 sec x + tan x = 1
* * *
, x lies in third quadrant.
Related documents