Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1. Axioms of probability 1.2 Sample space and events Experiment (eg. Tossing a die) Outcome(sample point) Sample space={all outcomes} Event: subset of sample space • Ex1.1 tossing a coin once sample space S = {H, T} • Ex1.2 flipping a coin and tossing a die if T or flipping a coin again if H S={T1,T2,T3,T4,T5,T6,HT,HH} p2. Sample space and events • Ex1.3 measuring the lifetime of a light bulb S={x: x E={x: x • 0} 100} is the event that the light bulb lasts at least 100 hours Ex1.4 all families with 1, 2, or 3 children (genders specified) S={b,g,bg,gb,bb,gg,bbb,bgb,bbg,bgg, ggg,gbg,ggb,gbb} p3. Sample space and events Event E has occurred in an experiment: If the outcome of an experiment belongs to E. Take events E, F as sets and sample space S then E F , EF E F , E F , E F , E c S E can be defined straightforward. Can also define E ni1 Ei ,ni1 Ei , E , i 1 i i 1 i if {E1, E2, … } is a set of events p4. Sample space and events Associative laws EU(FUG)=(EUF)UG Distributive laws (EF)UH=(EUH)(FUH) (EUF)H=(EH)U(FH) De Morgan’s 1st law: (E U F)c = EcFc De Morgan’s 2nd law: (EF)c = Ec U Fc E = ES = E(FUFc) = EF U EFc p5. 1.3 Axioms of probability Definition(Probability Axioms) S: sample space A: event, A S Pr: a function for each event A, i.e. Pr: 2S R Pr(A) is said to be the probability of A if Axiom 1 Pr(A) 0 Axiom 2 Pr(S) = 1 Axiom 3 If {A1, A2, A3, … } is a sequence of mutually exclusive events then Pr( i 1 Ai ) Pr( Ai ) i 1 p6. 1.4 Basic Theorem Theorem 1.4 P(Ac) = 1 – P(A) Theorem 1.5 If A B, then P(B-A)=P(BAc)=P(B)-P(A) Corollary If A B, then P(A) P(B) Theorem 1.6 P(AUB) = P(A)+P(B)-P(AB) (see p.19) p7. Basic Theorem Ex 1.15 In a community of 400 adults, 300 bike or swim or do both, 160 swim, and 120 swim and bike. What is the probability that an adult, selected at random from this community, bike? Sol: A: event that the person swims B: event that the person bikes P(AUB)=300/400, P(A)=160/400, P(AB)=120/400 P(B)=P(AUB)+P(AB)-P(A) = 300/400+120/400-160/400=260/400= 0.65 p8. Basic Theorem Ex 1.16 A number is chosen at random from the set of numbers {1, 2, 3, …, 1000}. What is the probability that it is divisible by 3 or 5(I.e. either 3 or 5 or both)? Sol: A: event that the outcome is divisible by 3 B: event that the outcome is divisible by 5 P(AUB)=P(A)+P(B)-P(AB) =333/1000+200/1000-66/1000 =467/1000 p9. Basic Theorem Inclusion-Exclusion Principle P( A1 A2 ... An ) P( Ai ) P( Ai A j ) P( Ai A j Ak ) ... ( 1)n 1 P( A1A2 ... An ) p10. 1.5 Continuity of probability function Recall the continuity of a function f: RR lim f ( xn ) f ( lim xn ) n n fro every convergent seq {xn} in R. The continuity of probability function is similar. Def. A seq {En, n>=1} of event of a sample space is called increasing if E1 E2 E3 En En 1 ; it is called decreasing if E1 E2 E3 En En 1 . p11. Continuity of probability function Thm 1.8(continuity of probability function) For any increasing or decreasing sequence of events, {En, n>=1}: lim P(En)=P(lim En) p12. 1.6 Probabilities 0 and 1 1. 2. If E and F are events with probabilities 1 and 0, then it is not correct to say that E is the sample space S and F is the empty set. Example: selecting a random point from (0,1) A={1/3}, P(A)=0 B=(0,1)-A, P(B)=1 p13. 1.7 Random selection of points from intervals Def. A point is randomly selected from an interval (a, b). The probability the subinterval (c, d) contains the point is defined to be (d-c)/(b-a). p14.