Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MER301: Engineering Reliability LECTURE 4: Chapter 3: Lognormal Distribution, The Weibull Distribution, and Discrete Variables L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 4 1 Summary of Topics Lognormal Distribution Weibull Distribution Probability Density and Cumulative Distribution Functions of Discrete Variables Mean and Variance of Discrete Variables L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 2 Normal Distribution Many Physical Phenomena are characterized by normally distributed variables Engineering Examples include variation in such areas as: Dimensions of parts Experimental measurements Power output of turbines L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 3 Lognormal Distribution Special case of the normal distribution where x e w and the variable w is normally distributed Chemical processes and material properties are often characterized by lognormal distributions Parameters and 2 are the mean and variance of W, respectively L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 4 Lognormal Distribution V ( X ) E( X ) (e 1) 2 L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 2 5 Lognormal Distribution L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 6 Lognormal Example 4.1 Gas Turbine CO Emissions CO 4.5e 0.07324(T flame 2750) T flame is a normally distributed function of combustor fuel/air ratio Mean value of CO will need to be 9ppm or less P(CO 9 ppm) L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 7 Lognormal Example 4.1(cont) CO as a Function of Temperature CO Emissions 60 50 40 30 Series1 20 10 0 2700 2720 2740 2760 2780 2800 Flame Temperature L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 8 Tflame 2745 2731 2754 2769 2768 2776 2717 2746 2766 2734 2740 2725 2722 CO(ppm) 6.49 18.1 3.36 1.12 1.2 0.67 50.45 6.03 1.39 14.53 9.36 28.08 34.98 2735 2738 2718 2741 2744 2752 2745 2745 2744 2770 2749 2747 2742 2780 2763 2786 13.5 10.84 46.89 8.7 6.98 3.89 6.49 6.49 6.98 1.04 4.84 5.61 8.08 0.5 1.74 0.32 2740 2775 2726 2758 2764 2779 2749 2742 2760 2744 2761 2728 2737 2727 2745 2750 2750 9.36 0.72 26.1 2.5 1.61 0.54 4.84 8.08 2.16 6.98 2.01 22.54 11.66 24.25 6.49 4.5 4.5 2745 2783 6.49 0.4 2724 2739 Lognormal Example 4.1 30.21 L Berkley Davis 10.07 Copyright 20009 10 5 15 Frequency Frequency excel spreadsheet for the CO example 0 2710 2720 2730 2740 2750 2760 2770 2780 2790 10 5 Tflame 0 0 5 10 15 20 25 30 35 40 45 50 CO(ppm) MER301: Engineering Reliability Lecture 4 9 Skewness and Kurtosis: Tflame Example N 50 2748.36 2.477286204 2745 2745 17.51705874 306.8473469 -0.492454159 0.351282489 69 2717 2786 137418 50 10 Frequency Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Skewness 5 0 2710 2720 2730 2740 2750 2760 2770 2780 2790 Tflame distributions produce a skewness statistic of about zero. 6 skewness 2 ...contains...zero N L Berkley Davis Copyright 20009 ses can be estimated roughly using a formula from Tabachnick & Fidell,1996 Kurtosis 24 kurtosis 2 ....contains...zero N Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric tail extending towards more positive values. Negative skewness indicates a distribution with an asymmetric tail extending towards more negative values" (Microsoft, 1996). Samples from Normal kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution. Positive kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution. Samples from Normal distributions produce a kurtosis statistic of about zero sek can be estimated roughly using a formula from Tabachnick & Fidell, 1996 Lognormal Example 4.1(cont) Tflame CO(ppm) Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count 2748.36 2.477286204 2745 2745 17.51705874 306.8473469 -0.492454159 0.351282489 69 2717 2786 137418 50 Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count 9.8932 1.638305582 6.49 6.49 11.58456986 134.2022589 3.843417031 1.995733832 50.13 0.32 50.45 494.66 50 Histogram of Temperature, with Normal Curve Histogram of CO, with Normal Curve 10 Frequency Frequency 15 5 10 5 0 0 2710 2720 2730 2740 2750 2760 Temperature 2770 2780 2790 0 5 10 15 20 25 CO L Berkley Davis Copyright 20009 30 35 40 45 50 Lognormal Example 4.1(cont) CO is given by the equation CO 4.5e 0.07324(T fl 2750) X CO / 4.5 and W 0.07324(T fl 2750) Let So that X eW or ln( X ) ln( CO / 4.5) W Histogram of CO, with Normal Curve Histogram of Tflame, with Normal Curve 10 15 Frequency 15 10 Histogram of W=-0.07324(Tfl-2750), with Normal Curve 5 15 5 0 5 10 15 20 25 10 0 30 35 405 45 2710 50 2720 2730 2740 2750 Tflame CO Frequency 0 Frequency Frequency Histogram of ln(CO/4.5), with Normal Curve 2760 10 2770 2780 2790 5 0 0 -2.5 -2.0 -1.5 -1.0 -0.5 -0.0 0.5 1.0 1.5 2.0 2.5 ln(CO/4.5) L Berkley Davis Copyright 20009 -2.5 -2.0 -1.5 -1.0 -0.5 -0.0 0.5 1.0 1.5 2.0 W=-0.07324(Tfl-2750) MER301: Engineering Reliability Lecture 4 12 2.5 Lognormal Example 4.1(cont) Descriptive Statistics Boxplot of Rounded CO Variable: CO Anderson-Darling Normality Test A-Squared: P-Value: 0 10 20 30 40 50 95% Confidence Interval for Mu 4.333 0.000 Mean StDev Variance Skewness Kurtosis N 9.8932 11.5846 134.202 1.99573 3.84342 50 Minimum 1st Quartile Median 3rd Quartile Maximum 0.3200 1.9425 6.4900 11.0450 50.4500 95% Confidence Interval for Mu 6.6009 4 9 14 13.1855 95% Confidence Interval for Sigma 9.6770 14.4359 0 10 20 4.5000 30 40 50 Rounded CO 95% Confidence Interval for Median 95% Confidence Interval for Median 8.0800 Descriptive Statistics Boxplot of X=ln(CO/4.5) Variable: ln(CO/4.5) Anderson-Darling Normality Test A-Squared: P-Value: -2.5 -1.5 -0.5 0.5 1.5 2.5 95% Confidence Interval for Mu 0.599 0.114 Mean StDev Variance Skewness Kurtosis N 0.11972 1.28348 1.64732 -3.5E-01 -4.9E-01 50 Minimum 1st Quartile Median 3rd Quartile Maximum -2.64351 -0.84201 0.36619 0.89740 2.41691 95% Confidence Interval for Mu -0.24504 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.48449 95% Confidence Interval for Sigma 1.07213 95% Confidence Interval for Median L Berkley Davis Copyright 20009 0.00000 -3 -2 -1 0 1 2 3 1.59939 95% Confidence Interval for Median X=ln(CO/4.5) 0.58531 MER301: Engineering Reliability Lecture 4 13 Lognormal Example 4.1(cont) Normality Test ln(CO/4.5) .999 .999 .99 .99 .95 .95 Probability Probability Normality Test CO .80 .50 .20 .05 .80 .50 .20 .05 .01 .01 .001 .001 0 10 20 30 40 50 -2 CO Average: 9.8932 StDev: 11.5846 N: 50 0 2 ln(CO/4.5) Anderson-Darling Normality Test A-Squared: 4.333 P-Value: 0.000 Average: 0.119725 StDev: 1.28348 N: 50 Anderson-Darling Normality Test A-Squared: 0.599 P-Value: 0.114 CO is given by the equation CO 4.5e 0.07325(T fl 2750) Test Ln(CO/4.5) and CO for normality …. Ln(CO/4.5) is normally distributed and CO is not L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 14 Lognormal Example 4.1(cont) CO is given by the equation Let CO 4.5e 0.07324(T fl 2750) X CO / 4.5 and W 0.07324(T fl 2750) So that X eW or ln( X ) W Now we want P(CO 9 ppm) P(CO / 4.5 2) P( X 2) P(ln( X ) ln( 2)) P(W ln( 2)) P(CO 9 ppm) P( X x) P( L Berkley Davis Copyright 20009 W ln( 2) MER301: Engineering Reliability Lecture 4 ) P ( ZW ln( 2) 15 ) Lognormal Example 4.1(cont) W 0.07324(T fl 2750) Descriptive Statistics Descriptive Statistics Variable: Temperature Variable: W=.07324(Tfl Anderson-Darling Normality Test A-Squared: P-Value: 2720 2735 2750 2765 2780 95% Confidence Interval for Mu Anderson-Darling Normality Test 0.598 0.114 Mean StDev Variance Skewness Kurtosis N 2748.36 17.52 306.847 0.351282 -4.9E-01 50 Minimum 1st Quartile Median 3rd Quartile Maximum 2717.00 2737.75 2745.00 2761.50 2786.00 A-Squared: P-Value: -2.5 -1.5 -0.5 0.5 1.5 2.5 95% Confidence Interval for Mu 95% Confidence Interval for Mu 2743.38 2744 2749 2754 14.63 2742.00 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 21.83 Minimum 1st Quartile Median 3rd Quartile Maximum -2.63664 -0.84226 0.36620 0.89719 2.41692 0.5 0.6 0.48472 95% Confidence Interval for Sigma 1.07169 1.59873 95% Confidence Interval for Median 95% Confidence Interval for Median 0.00000 0.58592 From the analysis of the data for flame temperature and W 0.12011 2750.00 0.12011 1.28295 1.64596 -3.5E-01 -4.9E-01 50 -0.24450 -0.3 95% Confidence Interval for Median 95% Confidence Interval for Median Mean StDev Variance Skewness Kurtosis N 95% Confidence Interval for Mu 2753.34 95% Confidence Interval for Sigma 0.598 0.114 Then L Berkley Davis Copyright 20009 P( Z W 1.28295 ln( 2) 0.12011 ) P( Z W 0.4459) 0.6736 1.28295 MER301: Engineering Reliability Lecture 4 16 Lognormal Example 4.1(cont) Summary of the CO Lognormal Distribution ln( 2) 0.12011 P ( X x ) P ( ZW ) P( ZW 0.4459) 0.6736 1.28295 2 / 2 E ( X ) E (CO / 4.5) e 2.569 E (CO) CO 4.5 2.569 11.559 11.6 ppm V ( X ) E ( X ) (e CO 23.67 ppm 2 2 Mean CO 1) (2.569) 2 (e1.647 1) 27.666 Standard Deviation of CO System Does not meet CO Requirements -combustor needs a factor of 5 improvement L Berkley Davis MER301: Engineering Reliability Copyright 20009 4 in CO Lecture performance 17 Weibull Distribution Widely used to analyze and predict failure for physical systems failure may be a function of time, cycles, starts, landings, etc Can provide reasonably accurate failure predictions with small samples Important in safety critical systems L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 18 The Weibull Distribution L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 19 The Weibull Failure Function…. Note! (n) (n 1)! (1) 0! 1 (1 / 2) 1 / 2 L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 20 The Weibull Distribution Two parameters define the Weibull distribution: b, the shape parameter, is a measure of the time dependency of the probability of failure. Completely random failures(random errors, external shocks) have a b = 1. Failures which increase in probability over time(wearout, old age) have b > 1, and failures whose probability decreases over time(manufacturing errors) have 0 < b < 1. ,the scale parameter, is the time at which a cumulative 63.2% of the population is expected to have failed L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 21 b, the shape parameter, is a measure of the time dependency of the probability of failure “Useful” Life Hazard Rate, h(t) Infant Mortality Bath Tub Curve (composite) MER30 1: Engi ne erin g R eliability b 1 b 1 Unio n Coll eg e Mec ha nic al Engi ne eri ng Le ct ur e 4 External Stress Failures Wear Out b 1 Wear Out Failures Manufacturing Defects Tburn-in Service Age (Hours or Starts, etc...) L Berkley Davis Copyright 20009 22 Twear-out b, the shape parameter, is a measure of the time dependency of the probability of failure beta= 0.50 delta= 1000 X Ln(x) Weibull 0 0 10 2.3026 0.095 beta= 50 3.912 0.2 delta= 100 4.6052 0.271 Unio n Coll eg e X Mec ha nic al Engi ne eri ng 200 5.2983 0.361 0 500 6.2146 0.507 10 1000 6.9078 0.632 50 2000 7.6009 0.757 100 5000 8.5172 0.893 200 10000 9.2103 0.958 500 1000 2000 5000 10000 L Berkley Davis Copyright 20009 "Weibull ..Excel..Worksheet " weibull ( x, b , , cumulative)" x value b shape. factor scale. factor Weibull cumulative " true" failure. function 1.00 1000 MER30 1: Engi ne erin g R eliability Ln(X)Le ct ur e 4 0 2.3026 0.01 3.912 0.049 4.6052 0.095 5.2983 0.181 6.2146 0.393 6.9078 0.632 7.6009 0.865 8.5172 0.993 9.2103 1 MER301: Engineering Reliability Lecture 4 22 beta= 2.00 delta= 1000 10 2.3026 50 3.912 100 4.6052 200 5.2983 500 6.2146 1000 6.9078 2000 7.6009 5000 8.5172 10000 9.2103 0 0.002 0.01 0.039 0.221 0.632 0.982 1 1 23 b, the shape parameter, is a measure of the time dependency of the probability of failure Effect of Beta on Weibull CDF Delta=1000 1.2 1 Welbull CDF Unio n Coll eg e 63.2% Mec ha nic al Engi ne eri ng Failure Rate at x=delta =1000 0.8 MER30 1: Engi ne erin g R eliability Le ct ur e 4 22 beta=0.5 0.6 beta =1 Infant Mortality beta=2 0.4 Old Age Useful Life 0.2 0 0 L Berkley Davis Copyright 20009 2 4 6 ln(x) X=1000 8 10 24 Weibull Plots-Cumulative Density Function Many kinds of failure data plot as a straight line with slope b . The x- axis is time and the y-axis is the cumulative failure density function F(t), ReliaSoft Weibull++ 7 - www.ReliaSoft.com 0 .5 0 .7 0 .6 1 .0 0 .9 0 .8 .0 .6 .4 .2 2 1 1 1 99.0 6 .0 4 .0 3 .0 Probability - Weibull b 90.0 U n re lia b ility , F ( t) 50.0 h 10.0 Data 1 Weibull-2P MLE SRM MED FM F=9/S=447 Data Points Susp Points Probability Line Top CB-II Bottom CB-II Target Rel 5.0 1.0 0.5 0.1 10.0 Weibull plots are used to predict cumulative failures at any time. For instance, with b = 1.66 and = 177051, after 30000 time units 5% of the population will have failed. Probability-Weibull CB@90% 2-Sided [R] 100.0 1000.0 Time, (t) 10000.0 100000.0 t=30000 ln(ln(1/(1-63.2%)) = 0. So, h is the y-intercept of the straight line plot. Jagmeet Singh GE 5/13/2008 10:47:44 AM b. h. L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 25 Weibull Plots-Cumulative Density Function (Two Cycle Weibull Paper) b 0. 5 b 1 1000 X=100 L Berkley Davis Copyright 20009 X=1000 b 2 X 10 50 100 200 500 1000 2000 5000 10000 X=10000 ln(X) 2.3026 3.912 4.6052 5.2983 6.2146 6.9078 7.6009 8.5172 9.2103 1000 "--------- Weibull CDF "---------" beta=0.5 beta =1 beta=2 0.095 0.01 0 0.2 0.049 0.002 0.271 0.095 0.01 0.361 0.181 0.039 0.507 0.393 0.221 0.632 0.632 0.632 0.757 0.865 0.982 0.893 0.993 1 0.958 1 1 Discrete Distribution Probability Mass Function Describes how the total probability of 1 is distributed among various possible values of the variable X L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 27 The Sum of Two Dice… Define the following probabilities Let Let Let Let Let Let Dice 2 L Berkley Davis Copyright 20009 A= probability of 2=1/36 B= probability of 3=2/36 C= probability of 4=3/36 D= probability of 5=4/36 E= probability of 6=5/36 F= probability of 7=6/36 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 Let Let Let Let H= probability of 9=4/36 I= probability of 10=3/36 J= probability of 11=2/36 K= probability of 12=1/36 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 The Sum of Two Dice… The Probability Mass Function Dice 2 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 Define the following probabilities Let Let Let Let Let Let A= probability of 2=1/36 B= probability of 3=2/36 C= probability of 4=3/36 D= probability of 5=4/36 E= probability of 6=5/36 F= probability of 7=6/36 n For a Probability Mass Function Let Let Let Let H= probability of 9=4/36 I= probability of 10=3/36 J= probability of 11=2/36 K= probability of 12=1/36 n f ( x ) P( X x ) 1 i 1 i i 1 i P( A) P( B) P(C ) P( D) P( E ) P( F ) P(G) P( H ) P( I ) P( J ) P( K ) 1 L Berkley Davis Copyright 20009 The Sum of Two Dice… The Cumulative Distribution Define the following probabilities Let Let Let Let Let Let Let Let Let Let Let A= probability of 2=1/36 B= probability of 3=2/36 C= probability of 4=3/36 D= probability of 5=4/36 E= probability of 6=5/36 F= probability of 7=6/36 G= probability of 8=5/36 H= probability of 9=4/36 I= probability of 10=3/36 J= probability of 11=2/36 K= probability of 12=1/36 L Berkley Davis Copyright 20009 Case A B C D E F G H I J K Dice Sum 2 3 4 5 6 7 8 9 10 11 12 iI 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 6 6,1 6,2 6,3 6,4 6,5 6,6 5 5,1 5,2 5,3 5,4 5,5 5,6 4 4,1 4,2 4,3 4,4 4,5 4,6 P(X<=xi) Probability 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1389 0.1111 0.0833 0.0556 0.0278 MER301: Engineering Reliability Lecture 1 1.2 1 Cumulative Distribution Dice 2 2 2,1 2,2 2,3 2,4 2,5 2,6 1 1,1 1,2 1,3 1,4 1,5 1,6 0.8 0.6 P(X<=xi) 0.4 0.2 0 0 2 4 6 8 10 12 Sum of Two Dice 30 14 The Sum of Two Dice… The Mean…. Dice 2 Define the following probabilities Let Let Let Let Let Let Let Let Let Let Let Dice Sum 2 3 4 5 6 7 8 9 10 11 12 A= probability of 2=1/36 B= probability of 3=2/36 C= probability of 4=3/36 D= probability of 5=4/36 E= probability of 6=5/36 F= probability of 7=6/36 G= probability of 8=5/36 H= probability of 9=4/36 I= probability of 10=3/36 J= probability of 11=2/36 K= probability of 12=1/36 L Berkley Davis Copyright 20009 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 P(X<=xi) 0.0278 0.0834 0.1667 0.2778 0.4167 0.5834 0.7223 0.8334 0.9167 0.9723 1 2 2,1 2,2 2,3 2,4 2,5 2,6 Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 SumXP(X<=xi) 0.0556 0.1668 0.3332 0.5555 0.8334 1.1669 1.1112 0.9999 0.833 0.6116 0.3336 Mean=7 MER301: Engineering Reliability Lecture 1 31 6 6,1 6,2 6,3 6,4 6,5 6,6 The Sum of Two Dice… The Variance…. Define the following probabilities Let Let Let Let Let Let Let Let Let Let Let 2 2,1 2,2 2,3 2,4 2,5 2,6 Dice Sum P(X<=xi) 2 0.0278 3 0.0834 4 0.1667 5 0.2778 6 0.4167 7 0.5834 8 0.7223 9 0.8334 10 0.9167 11 0.9723 12 1 A= probability of 2=1/36 B= probability of 3=2/36 C= probability of 4=3/36 D= probability of 5=4/36 E= probability of 6=5/36 F= probability of 7=6/36 G= probability of 8=5/36 H= probability of 9=4/36 I= probability of 10=3/36 J= probability of 11=2/36 K= probability of 12=1/36 L Berkley Davis Copyright 20009 Dice 2 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 Px(xi-mean)^2 0.695194614 0.889911387 0.750049901 0.444711134 0.139094528 8.1683E-08 0.138705608 0.444088974 0.749350181 0.889288667 0.694805414 Variance=5.835 Std Dev=2.4156 MER301: Engineering Reliability Lecture 1 32 6 6,1 6,2 6,3 6,4 6,5 6,6 Probability Mass Function 3-29 L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 33 Example 4.2 Consider a group of five potential blood donors – A, B, C, D, and E – of whom only A and B have type O+ blood. Five blood samples, one from each individual, will be typed in random order until an O+ individual is identified. Let X=the number of typings necessary to identify an O+ individual Determine the probability mass function of X L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 34 Cumulative Distribution Function 3-31 L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 35 Example 4.3 For the previous example (4.2), determine F(x) for each value of x in the set of possible values x=1 to x=4 L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 36 Expected Value or Mean of the Discrete Distribution L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 37 Example 4.4 Consider a university having 15,000 students X= number of courses for which a randomly selected student is registered. The probability mass function can be found by knowing how many students signed up for any specific number of classes Determine the probability mass function f(x). Calculate the mean/expected number of courses per student. L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 38 Variance of Discrete Distributions L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 39 Example 4.5 In example 4.4 the density function is given as shown Determine the variance and the standard deviation. L Berkley Davis Copyright 20009 x 1 2 3 4 5 6 7 MER301: Engineering Reliability Lecture 4 n 150 450 1950 3750 5850 2550 300 N 15000 f(x) 0.01 0.03 0.13 0.25 0.39 0.17 0.02 P 1 40 Expected Value of a Function If the random variable X has a set of possible values x1,x2,…,xn and a probability mass function f(x), the the expected value of a function h(X) can be estimated as n h ( X ) Eh( X ) h( xi ) f ( xi ) where i 1 X x1 , x 2 ....x n n f (x ) 1 i 1 L Berkley Davis Copyright 20009 i MER301: Engineering Reliability Lecture 4 41 Example 4.6 Let X be the number of cylinders in the engine of the next car to be tuned up at a certain facility. The cost of the tune up h(x)=20+3x+0.5x2 Assume 50%,30%,and 20% of cars have four, six, and eight cylinders, respectively Since x is a random variable, so is h(x) Write the density function f(y) for y=h(x) Determine the expected value for Y=h(X) L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 42 Summary of Topics Lognormal Distribution Weibull Distribution Probability Density and Cumulative Distribution Functions of Discrete Variables Mean and Variance of Discrete Variables L Berkley Davis Copyright 20009 MER301: Engineering Reliability Lecture 4 43