Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
DNA: Structure, Dynamics and Recognition L4: DNA deformation Les Houches 2004 BASE PAIR OPENING Bond vibrations Sugar repuckering DNA bending 1 fs 1 ps 1 ns (10-15 s) (10-12 s) (10-9 s) Domain movement Base pair opening 1 s 1 ms (10-6 s) (10-3 s) Transcription Protein synthesis Protein folding RNA lifetime 2.5 ms / nucleotide 6.5 ms / amino acid ~ 10 s ~ 300 s Biological time scale Enzymatic base chemistry HN3 imino proton S Adenine-Thymine base pair S HN1 imino proton S S Guanine-Cytosine base pair GC 15-25 ms AT 5-10 ms C G C A A G * * 4 1 23 4 1 A A 5 G C G 4 * * Base opening lifetimes Base pair lifetimes (ms) 15°C T T T T 1 17 19 4 A A A A A A A A 4 19 17 T T T 1 T 60 100 100 65 65 100 100 60 Leroy et al. Biochemistry 27, 1988, 8894 A4T4 versus T4A4 B-DNA - 2ns dynamic trajectory Free energy calculations using restrained opening Guidice et al. ChemPhysChem 2, 2001, 673 Varnai & Lavery J. Am. Chem. Soc. 124, 2002, 7272 BIASED PROBABILITY HISTOGRAM 60 50 Nw N(q) 40 P*i(q) exp [Vi(q)] 30 i =1 20 Pi(q) 10 0 Nw FREE ENERGY PROFILE 30 ni exp [Fi(q)Vi(q)] i =1 W(q) 25 20 Nw 15 Fi(q) kT ln Pi(q) 10 i =1 5 0 Reaction coordinate (q) WHAM G A G A G A G A G A G A G C T C T C T C T C T C T C B-DNA oligonucleotide studied Extraction d’une base de l’ADN Closed AT pair Adenine –50° (minor) Adenine –100° (minor) Adenine +50° (major) Adenine +100° (major) Free energy curves for base opening T G Imino proton accessibility (Å2) Dq Adenine (°) Dq Thymine (°) Dq Adenine (°) Dq Thymine (°) Base movements are coupled T A-tract T Ref Dq Sequence effects on opening: A-tracts G q < -50° -50° < q < +50° q > +50° T Bending amplitude (°) A word of warning! BASE FLIPPING Hha1 methyltransferase Klimašauskas et al. Cell 76 (1994) 357 Minor groove Major groove +160° opening -200° opening Backbone rearrangements Backbone rearrangements SUPERCOILING DNA supercoiling (circular plasmid) L = linking number = number of strand crossings T = twist = number of turns of double helix W = writhe = number of helix crossovers L=T+W s = supercoiling density = (L – L0) / L0 = DL / L0 typically s ~ -0.06 (1 crossing less per 17 turns) DNA supercoiling Linking number (L or Lk) – a topological constant Low force Twist (T) versus Writhe (W) High force L=T+W L.H. R.H. Interwound and toroidal forms of a negatively supercoiled plasmid Ethidium bromide intercalates into DNA and reduces its twist by ~26° Effect of an intercalator on a negatively supercoiled plasmid Topoisomerase I - single strand cuts - releases negative supercoiling Topoisomerase II (eukaryotes) - double strand cuts - releases negative supercoiling Topo II (gyrase) (prokaryotes) - generates negative supercoiling - consumes ATP Reverse gyrase (thermophiles) - generates positive supercoiling Topoisomerases Topoisomerase I – single strand cuts Topoisomerase II – double strand cuts Topo II (gyrase) DNA wrapping DNA packed on nucleosomes Nucleosome – schematic view EXTREME DEFORMATIONS DNA stretching Cluzel et al. Science 271, 1996, 792 70 pN phase transition S-DNA: fibre and ribbon forms Greenall et al. J. Mol. Biol. 2001, 305, 669 Rise ~ 5.6 Å Helix spacing ~ 13 Å Fibre diffraction of stretched DNA TBP-DNA complex 5' 3' 3' Minor 3' 5' Major 5' 3' 5' DNA: local stretching DNA: global and local 3'3' stretching X-ray Model TBP induced deformation N S Biotin : Streptavidin DIG : AntiDIG Magnetic twisting control Strick et al. Biophys. J. 74, 1998, 2016 Allemand et al. Proc. Natl. Acad. Sci. (USA) 95, 1998, 14152 Twisted DNA forms plectonemes > 3 pN < 0.3 pN DNA twisting under tension Simulation of DNA twisting Simulating twisting