Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometry Refresher 0011 0010 1010 1101 0001 0100 1011 By Erin Hill qsc@uwb.edu 1 2 4 What it’s used for: 0011 0010 1010 1101 0001 0100 1011 • • • • • Trigonometry is best applied to: Geometry Astronomy Physics Advanced mathematics Almost any engineering field 1 2 4 How far to your friend’s house from your house? 0011 0010 1010 1101 0001 0100 1011 Friend’s House ? a Your House b Grocery Store 1 2 4 Triangles and Pythagorean Theorem: 0011 0010 1010 1101 0001 0100 1011 Pythagorean theorem: c 2 a 2 b2 This rule works only when using a right triangle. (Special case of the law of cosines). 1 c a 2 b2 a b 2 4 How far to your friend’s house from your house? 0011 0010 1010 1101 0001 0100 1011 Friend’s House 1 ? Your House θ b Grocery Store 2 4 Triangles and Pythagorean Theorem: 0011 0010 1010 1101 0001 0100 1011 Only know the length of one side and the value of one angle. c=? a=? 1 θ 2 4 b Use trigonometry to solve for either of the unknown sides (again only for a right triangle) Unit Circle • “b” = length of the 0011 0010 1010 1101 0001 0100 1011 right triangle on the x-axis (x-value) • “a” = height of the right triangle on the y-axis (y-value) • “c” = distance between the origin and our point (b,a). (c = 1 for unit circle). y (b,a) 1 c θ 1 b a 2 4 x Trig Functions: SOHCAHTOA y 0011 0010 1010 1101 0001 0100 1011 sin(θ) = opp/hyp = a/c cos(θ) = adj/hyp = b/c c=1 1 θ b = cos(θ) tan(θ) = opp/adj = a/b a = opposite side to angle, θ. b = adjacent side to angle, θ. c = hypotenuse side to angle, θ. tan(θ) = sin(θ)/cos(θ) 2 a = sin(θ) 4 x Similar Triangles 0011 0010 1010 1101 0001 0100 1011 tan(θ) = a/b tan(θ) = c/d a/b = c/d c a θ b d 1 2 4 Same angle: ratio of sides must be the same! Angles in degrees: • There are 360 degrees in a circle. y 0011 0010 1010 1101 0001 0100 1011 90 60 45 135 30 • Some of the common angles are shown to the right. • All positive angles start from the xaxis. 1 180 225, -135 2 0, 360 x 4 315, -45 Angles in radians (standard unit): • There are 2 radians in a circle. y 0011 0010 1010 1101 0001 0100 1011 /2 /3 /4 3/4 • Some of the common angles are shown to the right. /6 1 • All angles start from the x-axis. 5/4 2 4 0, 2 x Angles in radians (standard unit): y 0011 0010 1010 1101 0001 0100 1011 • 2 = 360 = 180 • Calculator has radian and degree mode, so check before you calculate! /2 /3 /4 3/4 /6 1 5/4 2 4 0, 2 x Convert these: 0011 0010 1010 1101 0001 0100 1011 From degrees to radians: From radians to degrees: • 25 • /7 • -140 • 4 1 2 4 Convert these: 0011 0010 1010 1101 0001 0100 1011 From degrees to radians: From radians to degrees: • 25 /180 = 5/36 • /7 180/ 25.7 1 2 4 • -140 /180 = -7/9 • 4 180/ 229.2 • or: -140 + 360 = 220 220 /180 = 11/9 Try these: 0011 0010 1010 1101 0001 0100 1011 c=? a=? 30 3 1 2 4 Try these: 0011 0010 1010 1101 0001 0100 1011 cos(30) = 3/c c*cos(30) = 3 c = 3/cos(30) = 3.46 c = 3.46 1 2 a = 1.73 tan(30) = a/3 a = 3tan(30) = 1.73 30 3 4 All Star Trig Class y 0011 1010 1101 and 0001tangent 0100 1011 All:0010 sine, cosine, all (0,1) have positive values in this quadrant. Star: only sine has positive values in this quadrant. II Star Trig III 1 All (-1,0) Trig: only tangent has positive values in this quadrant. Class: only cosine has positive values in this quadrant. I 2 4 (0,-1) Class IV x (1,0) Calculating Angle Use Inverse functions to “undo” the trig functions: 0011 0010 1010 1101 0001 0100 1011 • sin(θ) = 0.5 • cos(θ) = 0.5 • tan(θ) = 0.5 sin-1(c) = arcsin(c) = asin(c) • sin-1(sin(θ))= sin-1(0.5) θ = sin-1(0.5) = 30 1 2 • cos-1(cos(θ)) = cos-1(0.5) θ = cos-1(0.5) = 60 4 • tan-1(tan(θ)) = tan-1(0.5) θ = tan-1(0.5) = 26.57 Trig Functions: Periodic θ =0010 0 cos(θ) 1 and sin(θ) 0011 1010 1101=0001 0100 1011= y 0: point on circle is on x-axis. (0,1) θ = 90 cos(θ) = 0 and sin(θ) = 1: point on circle is on y-axis. θ = 180 cos(θ) = -1 and sin(θ) = 0: point on circle is on (-x)-axis. θ = 270 cos(θ) = 0 and sin(θ) = -1: point on circle is on (-y)-axis. 1 c=1 θ (-1,0) (b,a) 2 a = sin(θ) 4 b = cos(θ) x (1,0) (0,-1) Sine and cosine increase and decrease as you go around the circle Trig Functions: Periodic 0011 0010 1010 1101 0001 0100 1011 sin(θ) cos(θ) 1 1 0.5 0.5 θ 0 0 0 pi/2 pi 3pi/2 0 2pi -0.5 -0.5 -1 -1 pi/2 pi 1 3pi/2 2 4 θ 2pi y-axis Shift 0011 0010 1010 1101 0001 0100 1011 3 + cos(t) General form: A + Bcos(ωt + φ) 4 3.5 1 3 2.5 • A: Shifts the function up (+) or down (-) along the y-axis. 2 1.5 1 0.5 0 -0.5 0 pi/2 -1 Dotted line represents the original cos(t) function. 2 4 pi 3pi/2 2pi t Amplitude 0011 0010 1010 1101 0001 0100 1011 0.5cos(t) General form: A + Bcos(ωt + φ) • B (Amplitude): Shrinks (small #) or stretches (large #) along the yaxis. 1 0.5 0 0 -0.5 -1 pi/2 pi 1 3pi/2 2 4 2pi t Frequency 0011 0010 1010 1101 0001 0100 1011 General form: A + Bcos(ωt + φ) • ω (frequency): Shrinks (large #) or stretches (small #) along the xaxis. (1/s = Hz) • T (period) = 2/ω: Time it takes for the wave to complete one full cycle. (s) cos(0.5t) 1 0.5 0 0 -0.5 -1 pi/2 pi 1 3pi/2 2 4 2pi t Phase Shift 0011 0010 1010 1101 0001 0100 1011 General form: A + Bcos(ωt + φ) • φ: Shifts right (-) or left (+) along the x-axis. cos(t+pi/4) 1 0.5 0 0 -0.5 -1 pi/2 pi 1 3pi/2 2 4 2pi t If you shift cosine by φ = -/2, your function becomes sine! Common Trig Mistakes 0011 0010 1010 1101 0001 0100 1011 • θ = x/sin 1 • sin(90) = 0.894 2 4 Why are these wrong? sin(θ) 1 0011 0010 1010 1101 0001 0100 1011 0.5 θ 0 0 -0.5 -1 pi/2 pi 3pi/2 1 2pi 2 4 0011 0010 1010 1101 0001 0100 1011 b a c • sin(θ) = b/c 1 2 4 What’s wrong with this? • sin(θ2) = sin2(θ) and 0011 0010 1010 1101 0001 0100 1011 • sin-1(θ) = 1/sin(θ) 1 2 4 What’s wrong with this picture? Trigonometric Identities y 0011 0010 1010 1101 you 0001have 0100 a 1011 More commonly, (0,r) circle of radius, r. x2 + y2 = r2 r2cos2(θ) + r2sin2(θ) (x,y) = 1 r r2 θ (-r,0) x = rcos(θ) cos2(θ) + sin2(θ) = 1 divide by cos2(θ): 1 + sin2(θ)/cos2(θ): = 1/cos2(θ) 1 + tan2(θ): = sec2(θ) (0,-r) 2 y = rsin(θ) x (r,0) 4 sec(θ) = 1/cos(θ), csc(θ) = 1/sin(θ), cot(θ) = 1/tan(θ) For more trig help… 0011 0010 1010 1101 0001 0100 1011 Come to the QSC! UW2-030 www.uwb.edu/qsc 425.352.3170 qsc@uwb.edu 1 2 4