* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Exam 1 - usablueclass.com
Cognitive neuroscience wikipedia , lookup
Haemodynamic response wikipedia , lookup
Optogenetics wikipedia , lookup
Emotional lateralization wikipedia , lookup
Holonomic brain theory wikipedia , lookup
Environmental enrichment wikipedia , lookup
Nervous system network models wikipedia , lookup
Central pattern generator wikipedia , lookup
Synaptic gating wikipedia , lookup
Embodied language processing wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
Neuroeconomics wikipedia , lookup
Cortical cooling wikipedia , lookup
Stimulus (physiology) wikipedia , lookup
Sensory substitution wikipedia , lookup
Neuroregeneration wikipedia , lookup
Metastability in the brain wikipedia , lookup
Neuroesthetics wikipedia , lookup
Neuroanatomy wikipedia , lookup
Microneurography wikipedia , lookup
Human brain wikipedia , lookup
Aging brain wikipedia , lookup
Neural engineering wikipedia , lookup
Time perception wikipedia , lookup
Cognitive neuroscience of music wikipedia , lookup
Premovement neuronal activity wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Neuroplasticity wikipedia , lookup
Eyeblink conditioning wikipedia , lookup
Neuroanatomy of memory wikipedia , lookup
Evoked potential wikipedia , lookup
Development of the nervous system wikipedia , lookup
Inferior temporal gyrus wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Neuroscience study guide #1 Lecture #1 9/5/14 General History and Physical Exam- Goal is to communicate!  Structure of H&P o Chief Complaint- the patient’s age, sex, brief pertinent hx, and presenting problem o History of Present Illness- Complete hx of current medical problem that brought the patient to medical attention.  Includes risk factors of the current illness and a detailed description of symptoms (chronological) and pertinent negative information o Past medical History- prior medical and surgical problems not directly related to current problem o Review of Systems- head, eyes, ears, nose, throat, pulm, cardio, integumentary, cognition, ms, GI, GU o Family History- immediate relatives and noted familial diseases (i.e. diabetes, stroke, cancer) o Social and Environmental Hx- occupation, family situation, travel hx, sex hx, habits. o Medications and Allergies- all medications currently being taken o Physical Exam- General appearance, vital signs, etc. o Laboratory Data- dx tests (blood work, ECG, radiology) o Assessment and Plan- begins with a one to two sentence summary that encapsulates the main features of the diagnosis. In neuro this is separated into two parts:  Localization- based on neuroanatomical clues gained from H&P  Neurological Differential diagnosis- (arrow) more acute diagnoses are often left at the top point of the arrow and outer edges. SEE PAGE 8 IN BOOK. Relationship Between the General Physical Exam and the Neurological Exam  Is part of the general physical exam  the patient must be treated as a whole with problems in different systems given priority depending on the situation  essential info about neuro diseases can be taken from all portions of the general exam o General Appearance- how a person behaves determines mental status o Vital signs- hypertension, bradycardia, orthostatic changes can be seen in autonomic dysfunctions and SC injuries.  Respiratory=brainstem  Elevated temp= inflammation which could include NS o HEENT-hydrocephalus or tumors could be congenital abnormalities.  Must be examined during TBI’s o Neck-meningeal irritation with neck stiffness, cervical bruits with CAD o Back and Spine- tenderness, misalignment fx, osteomyelitis o Lymph- infections, granulomas involving NS o Breast-breast cancer met to NS o Lungs-diminished breath sounds with decreased movement of diaphragm could be sign of phrenic nerve dysfunction o Heart- embolic sources with atrial fib o Abdomen-hepatomegaly in wilsons disease, anyeurism o Extremities- Kernigs sign and Brudzinski’s sign for meningitis o Pulses- PVD can masquerade Neuro disease o Neuro exam o Rectal- decreased sphincter tone due to SC injury o Pelvic/Genitalia o Derm Lecture #2 9/6/14 Main parts of the nervous system 1. CNS- the brain and SC 2. PNS- CN and ganglia, sympathetic and parasympathetic nerves and ganglia, enteric NS During embryological development:  The CNS arises from a sheet of ectodermal cells that fold over to form the neural tube   This tube from several swellings and out pouchings in the head that eventually develop into the brain, while the part of the neural tube running down the back of the embryo forms the SC The fluid filled cavities within the neural tube develop into the brain ventricles which contain CSF Embryological development-series of 5 events 1. Neurulation: formation of the neural crest and neural tube (Brain and SC) 2. Cell proliferation: within the neural tube 3. Migration and aggregation: of cells within definitive locations (cells have specific fxns) 4. Formation of axonal and dendritic processes- communication 5. Formation of connections between the nerve cell to nerve cell or muscle cells (synaptogenesis) Basic Macroscopic Organization of the NS Stage 1= Neurulization o Embryo-gastrula on Day 14 contains:  Ectoderm-entire NS is derived from embryologic ectoderm  Mesoderm  Endoderm o Embryo (4mm)-Notochord on Day 21  mesoderm contains notochord (bundle of cells in the mesoderm)  Neural plate also develops (in neuroectoderm) and gets heavy as cells migrate toward the center and start to develop a neural groove and crest o Neural tube Day 28  Neural groove is continue to deepen  Neural crests begin to move closer together to each other until closes and neural tube forms (takes one week)  Central canal is the opening in the middle  Somites are on both sides of the neural tube  Takes an additional week for the anterior neuropore and posterior neuropore to close o Deficits in neurulization:  Failure of posterior neuropore to close=spina bifida  Failure of anterior neuropore to close=anencephaly The 7 secondary subdivisions of Embryological development-5 weeks 1. Telencephalon a. cerebral hemispheres b. cerebral cortex c. subcortical white matter d. basal ganglia e. basal forebrain nuclei 2. Diencephalon-Third ventricle a. Thalamus b. Hypothalamus c. Epithalamus 3. Mesencephalon-cerebral aquaduct a. Cerebral peduncles b. Midbrain tectum c. Midbrain tegmentum 4. Metencephalon- fourth ventricle a. Pons b. cerebellum 5. Myelencephalon a. Medulla 6. Neural Tube-central canal a. SC 7. Neural crest a. Peripheral nerve ganglia 2 Embryo Flexures : 1. Cephalic Flexure-brain to BS 2. Cervical Flexure- SC from BS Stage 2=Cell Proliferation- SEE PAGE 20/615 IN NOTEPACK FOR PICTURE     Germinal layer-innermost layer-lines ventricles Mantle layer-intermediate layer- future site for grey matter Marginal white layer-outer layer-future site for white matter Sulcus limitans- innermost lining that divides neural tube into basal and alar plate o Alar plate-will be the dorsal root o Basal plate-contains alpha motor neurons How does the brain grow?  Myelin and Blood supply  We only have 100 billion neurons-that's it Stage 3=Migration-know least about 1. Radial Migration-Greater distance of information from medulla to telencephalon 2. Tangential Migration-information stays at level of BS  Defects= o Dyslexia- lack of migration o Lessencephaly-Smooth brain Stage 4=Cell Differentiation  Formation of axonal and dendritic processes  Development of cranial nerves o 1st swallow and gag reflexes-14 weeks  CN V, VII, IX, XII o 2nd visual motor system- 25 weeks  CN II, III, IV, VI o 3rd hearing- 28 weeks  CN VIII o 4th olfaction- 31-32 weeks  CNI Stage 5=Synaptogenesis  Correlated with known types of permanent learning  Basis for neural plasticity  Occurs throughout development  Other parts of the brain can take over in case of injury or disease  2-20 when 2x growth of brain-----declines thereafter Lecture #3 9/11/14 Cerebrospinal Fluid  formed by choroid plexus o found on the floor of the lateral ventricle and top of third ventricle  circulates from the lateral ventricles to the third ventricle then leaves to the fourth ventricle to percolate around the outside of the Brain and SC CNS Covering-suspend brain mater to the skull  pia mater  arachnoid mater  dura mater-Falx cerebri, tentorium cerebellar CNS organization Planes Dorsal Rostral Caudal (For Cerebrum) Ventral Rostral Ventral Dorsal (for BS and Cerebellum) Caudal Neuron components  neurons-nerve cells  dendrites-short process receive inputs to cell  axon-carries output  glia-support cells  Multipolar- neurons having several dendrites and axons (mammals)  bipolar-neurons with single dendrite and axon (sensory vision or olfactory)  unipolar- neurons that have both axon and dendrite from a single process coming off cell body (mainly in invertebrates) Synapses-communication between neurons (axon of one neuron to dendrite of another)  Chemical Synapses o NT molecules stored in synaptic vesicles are released from presynaptic vesicles of the neuron o they then bind to NT receptors on the post-synaptic neuron o this causes either an excitation (AP)or inhibition of the post-synaptic neuron o myelin sheath-specialized glial cells (lipid)  oligodendrocytes-CNS  schwann Cells-PNS Neurotransmitters (SEE TABLE 2.2 on pg. 20)  CNS o glutamate-excitatory o GABA-inhibitory  PNS- ACH  ANS- ACH and NorEpi CNS Gray Matter& White Matter o In CNS grey matter outside white matter inside o In PNS grey matter inside and white matter outside o White matter: myelinated axons (transmits the signals over greater distances) o In PNS:  Peripheral nerves-bundles of axons o In CNS:  Tract-DCML  Fascicle  Lemniscus-BS multiple tracts in that area  Bundle  Commissure-pathway that connects structures on the right and left sides of CNS o Gray matter: cell bodies (Where communication occurs) o In PNS:  Ganglia-clusters of cell bodies o In CNS: 1. Cerebral cortex (outer portion) 2. Nuclei- BG, Thalamus, CN nuclei Spinal cord and Peripheral Nervous System o 12 Cranial nerves o 31 spinal nerves o dorsal nerve roots contain afferent sensory info to the dorsal SC o ventral nerve roots contain efferent motor info to the ventral SC o SC ends at L1 or L2 level o Cauda Equina- collection of nerve roots o Cervical enlargement- C5-T1 (brachial plexus)- thicker b/c more cell bodies (gray matter) o Lumbosacral enlargement- L1- S4- thicker b/c more cell bodies (gray matter) o ANS-controlled by hypothalamus and limbic system and afferent sensory from periphery o Sympathetic T1-L3  Thoracolumbar division  Releases NE for flight or flight response o Parasympathetic  S2-4  Craniosacral division  ACH is released for more sedentary function Cerebral Cortex: Basic Organization and Primary Sensory and Motor Areas o Sulcus o Fissure-deep sulcus o Four major lobeso Frontal o Parietal o Temporal o Occipital o Insular cortex-in the depths of the Sylvian fissure where all lobes come together o Longitudinal fissure-separates the two cerebral hemispheres o Corpus callosum-connects both homologous and heterologous areas in the 2 hemispheres ****REVIEW ANATOMY PG 26-28*** Primary Sensory and Motor Areas o Are topographically organized (Homunculus) o Primary visual Cortex- in occipital lobe along the calcarine fissure o Mapped in retinotopic fashion o Primary auditory Cortex- (Heschel’s gyrus) o Two finger life gyri that lie inside Sylvian fissure on the superior surface of each temporal lobe o Mapped in tonotopic fashion (cochlea) o Primary somatosensory cortex- in post-central gyrus (parietal lobe) o Brodmann’s area 3,1,2 o Controls opposite side of body o Primary motor cortex-in precentral gyrus (frontal lobe) o Brodmann’s area 4 o Controls opposite side of body Cell Layers and Regional Classification of the Cerebral Cortex o Majority of the cerebral cortex is composed of neocortex which has 6 cell layers o Layer I- Molecular layer  Contains: dendrites and axons from other layers o Layer II- Small Pyramidal layer  Contains Cortical to cortical connections o Layer III-Medium Pyramidal layer  Contains Cortical to cortical connections o Layer IV-Granular layer  Receives inputs from thalamus o Layer V- Large pyramidal layer  Sends outputs to subcortical structures (other than thalamus) o Layer VI- Polymorphic layer  Sends outputs to thalamus Brodmann’s Area o 1,2,3-Primary somatosensory cortex- postcentral gyrus- touch o 4- primary motor cortex- precentral gyrus- voluntary movement control o 6 sports- precentral gyrus and rostral adjacent- limb and eye movement planning o 17-primary visual cortex- banks of calcerine fissure- vision o 18-secondary visual cortex- medial and lateral occipital gyri- vision, depth o 19-tertiary visual cortex- medial and lateral occipital gyri-vision, color, motion, depth o 22- higher order auditory cortex- superior temporal gyri-form vision o 23-27- limbic association cortex -cingulate gyrus- Emotions o 41,42- primary and secondary auditory cortex-Heschl’s gyri- hearing o 44, 45-Brocas- inferior frontal gyrus-speech and movement planning Motor Systems o Corticospinal tract- begins mainly in the primary motor cortex where neuron cell bodies project via axons down through the cerebral white matter and brainstem to reach the SC o AKA: pyramidal tract o Pyramidal Decussation-crossover of fibers to the opposite side of the body which occurs at the junction between the medulla and the spinal cord o Lesions occurring above pyramidal decussation will cause contralateral weakness o Lesions occurring below pyramidal decussation will cause ipsilateral weakness o Upper motor neuron-motor neurons that project from the cortex down to SC or BS o Lower motor neuron-located in anterior horn of gray matter of spinal or in BS motor nuclei Cerebellum and Basal Ganglia ***KNOW ANATOMY OF THESE STRUCTURES*** o o o o o Do not project directly to the LMN but act by modulating the output of the corticospinal and other descending motor systems Designed to refine movement Receive major inputs from the motor cortex and project back to the motor cortex via the thalamus Cerebellum, receives inputs from the BS and SC Lesions involved ataxia (ex: PD)-abnormal coordination Main Somatosensory Systems 1. DCML- convey proprioception, vibration sense, and fine, discrimitive touch  Primary sensory neuron axons carry information enter first the SC via the dorsal root and then the ipsilateral white matter dorsal columns to ascend all the way to the dorsal column nuclei in the medulla.  Then synapse onto the secondary sensory neurons which send out axons that cross over to the other side of the medulla and ascend to the contralateral side and synapse in the thalamus  Third order neurons project to the primary somatosensory cortex in the postcentral gyrus. 2. Anterolateral-pain temperature sense, and crude touch  Primary sensory neurons carrying information also enter the SC via the dorsal roots and synapse immediately in the gray matter of the SC  Secondary sensory neurons cross over to the other side of the SC and ascend in the anterolateral white matter froing the spinothalamic tract before synapsing in the thalamus  Third order neurons continue to the primary somatosensory cortex. Thalamus  Important relay center  Gray matter structures located deep within the cerebral white matter just above the BS and behind the BG  Project strongly via layer VI  Smell doesn’t go to thalamus  Receives info from cerebellum, limbic, special sensory, and reticular formation sends info to cortical level Stretch Reflex (Monosynaptic Stretch Reflex)  Provides rapid local feedback for motor control  Begins with specialized receptors called muscle spindles which detect the amount and rate of stretch in muscles  Information is transmitted to the distal processes of sensory neurons and is then conveye via the dorsal roots into the spinal gray matter  The sensory neurons form multiple synapses including some direct synapses onto LMN’s in the anterior horn  The LMNs project via the ventral roots back out to the muscle, causing it to contract  Damage anywhere in this pathway can cause the reflex to be diminished or absent Brainstem and Cranial Nerves ***KNOW CN****  Reticular formation of the brainstem o Network like form central portions of the BS to from the medulla to the midbrain o Caudal portion is mainly motor and autonomic functions o Rostral portion is mainly regulating level of consciousness and influencing higher areas through modulation of thalamic and cortical activity. o Contains nuclei and white matter tracts  Midbrain  Pons  Medulla  Connections o Rostrally-diencephalon o Dorsally-cerebellum o Caudally-SC Lecture #4 9/12/14 Limbic System (fringe)  Lesions can cause o Difficulty forming new memories o Behavioral changes-laugh when serious or cry when funny o Epileptic seizures caused by  Fear  Memory distortions  Olfactory hallucinations  Anatomical Location o Cortical areas-medial and anterior temporal lobe o Anterior insula o Inferior medial frontal lobes o Cingulate gyri o Hippocampal formation o Amygdala o Several nuclei in medial thalamus, hypothalamus, BG, septal area and BS o Fornix-connects hippocampal formation to hypothalamus and septal nuclei  Diverse function o Regulation of emotion o Memory o Appetite o Autonomic o Neuroendocrine o Olfaction Association Cortex-functions as processing high-order information  Unimodal association cortex- higher processing takes place mostly for a single sensory or motor modality o Located adjacent to a primary motor or sensory area o Ex: visual association cortex is located adjacent to the primary visual cortex  Heteromodal association cortex- involved in integrating functions from multiple sensory and or motor modalities (ex: prefrontal association cortex)  Language-usually perceived first by the primary auditory cortex in the superior temporal lobe when we are listening to speech or by the primary visual cortex in the occipital lobes when we are reading o from there, cortical to cortical association fibers convey information to Wernicke’s area in the dominant (LEFT) hemisphere  LESION: wernicke’s aphasia (receptive) o Also goes to Broca’s area is located in the frontal lobe in the left hemisphere adjacent to the primary motor cortex involved with muscles for speech  LESION: Broca’s aphasia (expressive)  Parietal lobe-divided by intraparietal sulcus o superior lobe o inferior lobe on dominant hemisphere LESIONS  difficulty with calculations  L-R confusion  Inability to identify fingers-finger agnosia  Difficulties with written language  Gerstmann’s syndrome-a cluster of abnormalities  Apraxia-cant execute a task that is asked of them o Spatial awareness-non dominant hemisphere  Hemineglect-neglect left side of environment/body (can see but can’t perceive)  Anosognosia-don’t think they have a disease  poor prognosis o Extinction-eyes closed tactile or visual stimulus left side becomes “extinct” when stimulated simultaneously  Frontal Lobe-Largest association cortices o LESIONS-cause personality and cognitive functioning  Frontal release signs-grasp, root, suck, and snout reflexes   Perseveration-repeat a single action over and over without moving on to the next one Disinhibited behaviors-pervs Abulic- stare and have delay of response Magnetic gait- feet shuffle on the floor Urinary incontinence-and don't care     Visual Cortex o Parieto-occipital lobe o Inferior temporal lobe o LESIONS  Prosopagnosia-cant recognize faces (would have to use other senses)  Achromatopsia- “” color  Palinopsia- deja vu Blood Supply ***KNOW ARTERIES** 1 pair of Draining Veins o Internal jugular 2 main arteries 1.) Internal carotid 2.) Vertebral artery a. Basilar artery  Circle of Willis consists of: o Vertebrobasilar  Posterior cerebral arteries o Internal cartotid  Anterior cerebral arteries  Middle cerebral arteries  Brainstem and Cerebellum o Vertebral and basilar arteries  Superior cerebellar artery  Anterior inferior cerebellar artery  Posterior inferior cerebellar artery  Spinal cord o Anterior spinal supplies 2/3 o Posterior spinal CHAPTER #3 Overview of Neurologic Exam 1.) Mental status 2.) CN 3.) Motor Exam 4.) Reflexes 5.) Coordination and gait 6.) Sensory  Taking Patient evaluation, Neuro exam: diagnostics, General P.E., Patient Hx Tying into FUNCTION!!!! 1.) Mental Status Neuroexam.com-Video #1  Tests that have many different versions but follows a fairly standard format around the anatomy of the brain  Involve global brain function that determine how well we will be able to perform the rest of the exam o Apraxia o Mood o Logic o Abstract reasoning  Organized around the association cortex and limbic system  Mainly dominant hemisphere (language)  r/o non dominant dysfunction (hemineglect)  frontal lobe functions- cognitive level  level of alertness, attention, and cooperation-video #4 o spelling short word and saying the months of the year front and backwards (takes 2x long backwards)- digit span o what is being tested? BS reticular formation and in bilateral lesions of the thalami or cerebral hemispheres. o Impairments in patients with: encephalitis, behavioral or mood disorders, focal brain lesions, dementia - A&Ox3 (video #5) o ask the patient’s name, location, the date, and note the exact response o what is being tested? Recent and long term memory (limbic lobe), and level of alertness, attentiveness, and language capabilities  Memory o Recent memory (video #6)- being able to recall items or a brief sotry after a delay of 3-5 min.  LESION in: limbic system and by the medial diencephalon medial temporal lobe o Remote memory (Video #7)- ask the patient about historical or verifiable personal events o What is being tested?  Anterograde amnesia  Retrograde amnesia  Language- What is being tested???  Dominant hemisphere-Brocas area  temporal and parietal lobe-wernicke’s area  subcortical white and gray matter-thalamus and caudate nucleus o Comprehension (video #9)-how can they follow commands o Naming (video #10): know what items are what o Spontaneous speech (video #8)  Paraphasic speech-putting words in appropriate place (age appropriate)  Neologism-new words (ex. Wernicke’s aphasia) o Repetition (video #11)-being able to repeat immediately (has a lot of “S” words and needs to annunciate) o Reading o Writing (video #12)  Gertmann’s syndrome- patient has multiple problems with calculations (video #13), R-L confusion, Finger agnosia, agraphia o What is being tested? L parietal Lobe  Apraxia (video #15)-can’t execute task o What is being tested-variable parts of the brain  Neglect and constructions (video #16)- hemineglect o What is being tested? Right parietal lobe, frontal lobe, thalamus, BG  Sequencing tasks o Perseveration-continual involuntary repetition of a mental act usually speech or overt behavior o Abulia or changes in personality o What is being tested? -Frontal lobe  Logic and abstraction (video #22) o Solve simple problem (take in age and education) o What is being tested? –higher order associated cortex-not well localized  Delusions and Hallucinations (video #23) o Toxic, metabolic, psychiatric disorders, focal seizures/lesions o What is being tested?- association cortex and Limbic system  Mood o Signs of depression, anxiety, mood o What is being tested?- psychiatric in origin therefore due to imbalances in NT systems 2.) cranial nerve assessment CNI (video #24)- olfactory-olfaction  What is being tested? Obstruction or damage to olfactory nerves in mucosa, as they cross cribiform plate, or intracranial lesions affecting the bulb CNII (video #25)-Optic Visual acuity-eye chart  color vision-ability to distinguish colors (red desaturation)  visual fields (video #27)-periphery  What is being tested? Damage anywhere along the visual pathway from eye to visual cortex CNIII-Oculomotor-extraocular muscles, pupil constrictor and ciliary muscles of lens for near vision CNIV-Trochlear-Superior oblique muscles CNV-trigeminal-sensations of touch pain, temp, vibration, and jt position for the face mouth, nasal, meninges, muscles of mastication, tensor tympani CNVI-Abducens-Lateral rectus muscle-abduction of the eye CNVII-facial-muscles of facial expression, anterior 2/3 of tongue taste CNVIII-vestibulocochlear- hearing; vestibular sensation CNIX-Glossopharyngeal-taste in posterior tongue CNX-vagus-swallowing, voice, parasympathetics to the heart CNXI-spinal accessory-SCOM, Trap CNXII-Hypoglossal-Intrinsic muscles of the tongue CN examination Techniques and What’s being tested  Pupillary Response (CN II and III) video #29 o Accommodation response-converge and diverges  What is being tested?-ipsilateral optic nerve, ipsilateral parasympathetics traveling in CN II, or pupillary constrictor muscle, or in bilateral lesion of pathways from optic tracts to visual cortex o Note direct and consensual response (PERRL) o What is being tested?  Direct response (shining light into eye your testing) -ipsilateral optic nerve, pretectal area, ipsilateral parasympathetics traveling in CN III or pupillary constrictor muscles of the iris  Consensual Response (contralateral side)-contralateral optic nerve, pretectal area, ipsilateral parasympathetics traveling in CN III or pupillary constrictor muscle  Extraocular movements (CN III, IV, VI) video #34 o Smooth movement o Saccades-rapid eye movement horizontal and vertical o Optokinetic (train)nystagmus-normal o What is being tested? Abnormalities with central eye control which can be with individual muscles, CN itself, cortex, and BS  Facial sensation(CN V) o Muscles of mastication o What is being tested? Facial sensation impaired by lesions of trigeminal nerve, trigeminal nuclei to BS, or ascending sensory pathway to thalamus and somatosensory cortex in post central gyrus o Weakness in muscles of mastication due to lesions in UMN pathway synapsing on CN V in LMN trigeminal nucleus in pons, peripheral nerve as it exits BS to muscle itself, or NM junction  Muscles of facial expression and taste (CN VII) videos #40&41 o What is being tested? weakness caused by UMN in contralateral motor cortex or descending pathways, LMN in ipsilateral CN VII nucleus, NM junction, or facial muscles  Unilateral deficits in taste can occur in lateral medulla or in lesions of facial nerve  Hearing and vestibular sense (CN VIII) video #42 o Vestibular sense generally not tested unless vertigo-inner ear, or limitations with gaze o What is being tested? hearing loss=acoustic and mechanical components or ear, neural elements of cochlea, or nerve itself. Vestibular loss=peripheral apparatus in inner ear, nerve itself, vestibular nuclei in BS, cerebellum, or connections to occularmotor nuclei  Palate elevation and gag (CN IX, X) Video #44 o What is being tested lesion of nerve itself NM junction, or pharyngeal muscles  Muscles of articulation (CN V, VII, IX, X, XII) video #45 o Changes from baseline? o What is being tested? peripheral or central portions of these CN; motor cortex lesions, cerebellum, BG, or descending pathways to BS  SCOM and Trapezius muscles (CN XI) video #46 o What is being tested? SCOM or trap weakness, MN junction, LMN of CN XI; unilateral UMN lesion in cortex or descending pathways cause contralateral weakness  Tongue muscles (CN XII) (video #47) o Noting fasciculations of the tongue while it is resting on the floor of the mouth and have the patient stick out their tongue to look for it move more to one side than the other o What is being tested? unilateral weakness causes deviations toward side of weakness and can result from lesions of tongue muscles, NM junction, LMNof CN XII, or the UMN in the motor cortex which would cause contralateral weakness 3.) Motor Exam  Observation- looking for twitches, posture, tremors, and involuntary movement o What is being tested? BG (resting tremor, involuntary movement) and cerebellum (active tremor)  Inspection (video #48)-looking for muscle wasting, hypertrophy, fasciculations in hand, shoulder and thigh (as in LMN lesions)  Palpation-palpation for tenderness noted in patients with myositis  Muscle tone testing (video 49 and 50)-patient will be relax and you will passively move move to feel resistance or rigidity o What is being tested? presence of UMN lesion will yield hyperreflexia and increased tone due to damage to pathways that travel in close approximation with the corticospinal tract; also BG and cerebellum  Functional testing (video #51 and 52)-performed before specific muscle testing o Drift- holding arms up and close eyes and muscle weakness in UE limb shows “drifting” away o Fine movements- testing rapid finger tapping, rapid hand pronation-supination, rapid hand/foot taping  Strength testing (Videos #54-57)- testing in symmetrical fashion and compare with opposite side o What is being tested? patterns of weakness can help localize to particular cortical or white matter region, SC level, nerve root, peripheral nerve or muscle 4.) Reflexes (video #58)-DTR  limbs are relaxed and symmetrical and tested bilaterally  clonus-seen when reflexes are very brisk. A repetitive vibratory contraction of the muscle that occurs in response to muscle and tendon stretch  rated: o 0-absent (abnormal) o 1+-trace or seen only with reinforcement o 2+-normal o 3+-brisk o 4+-non-sustained clonus (abnormal) o 5+-sustained clonus (abnormal)  what is being tested? Diminished abnormalities in muscles, sensory neurons, LMN, and NM junction, acute UMN lesions and mechanical factors such as joint disease are due to UMN lesions  plantar response (Babinski’s-video #60)-UMN lesion; documentation using a picture stick figure and reflex responses 5.) Coordination & gait (video #62)  Appendicular coordination tests-fine movements of the hands and feet o rapid alternative movement o heel-shin test o finger-nose test-looking for accuracy o what is being tested? testing multiple integrative sensory and motor subsystems that include  position, sense pathways, visual pathways, LMN, UMN, BG, Cerebellum  Rhomberg test (video #67) o What is being tested? integration of visual, vestibular, and somatosensory systems  Gait-gait o Observe from front and lateral views and note:  Stance-how far apart feet are  Circumduction-an abnormal arced trajectory of leg swing in the medial to lateral direction)  Tandem gait  Forced gait-asking them to walk on toes, insides/outsides of feet  What is being tested? multiple sensory or motor systems which include:  Vision, Proprioception, Vestibular, LMN, UMN, BG, cerebellum, higher order planning systems in association cortex 6.) Sensory Exam  Primary sensation, asymmetry, sensory level (video #70) o Light touch o Pain-sharp/dull o Temperature o Vibration o Joint position sense o Two point discrimination  Cortical sensation; extinction (videos #75-77) o Graphesthesia- writing letter or number on hand o Sterognosis-closes eyes and recognizing common objects o Tactile extinction-too much stimulus so info on lesion affected side is not perceived o What is being tested? Peripheral nerves, nerve roots, posterior columns, anterolateral systems in SC, BS, Thalamus, or sensory cortex Neurologic Exam as a Flexible Tool  Flexibility-prioritize  Exam limitations and strategies- impairments in one area affect performance in other portions of exam Coma Exam  Simpler exam  Performed in emergency situations  Useful on uncooperative patients  1.) Mental status- document with specific statement of what the patient did in response to a stimulus  2.) CN assessmento Opthalmoscopic exam (CN II) o Vision (CN II) o Pupillary Response (CN II, III) o Extraocular Movements and vestibule-ocular reflex (CN III,IV, VI, VIII) o Corneal Reflex, facial asymmetry, grimace response (CN V, VII) o Gag reflex (VN X, IX)  3.) Sensory and 4.) Motor exam o spontaneous movements o withdrawal from a painful stimulus  5.) Reflexeso DTR o Plantar response o Posturing reflexes  6.) Coordination and Gait-not testable Brain Death-a clinical Diagnosis  irreversible lack of brain function  no evidence of brain/brainstem function  two separate brain death examinations confirm diagnosis Conversion Disorder, Malingering, and Related Disorders  Psychiatric disorders mask themselves as neurologic dysfunction o Larger classification-think they genuinely have disease  Conversion disorder-causes patient to have sensory or motor deficits without a corresponding focal lesion in NS  Somatization disorder-patients have multiple somatic complaints that change over time o Second, less common classification- have conscious control over symptoms, ulterior motive  Factitious disorder-Dr. Shop, internally driven (Munchausen syndrome)  Malingering-externally driven, (ex. Work comp) Chapter #4 9/15/14 Medical history  Ask the right questions  Listen observe  Don’t leave yourself guessing Components of Neurological Exam  Mental status  CN and sensory organs  Motors systems  Reflexes  General sensory systems  Gait Neurologic Diagnosis  where is the lesion  what is the lesion o differential diagnosis-confirm with diagnostic tools Imaging planes  Horizontal  Coronal  Sagittal  Scout (localized)-horizontal with a slight angle Computerized Tomography  Advantages o Greater sensitivity than plain x-ray o Optimal for bony lesions  Disadvantages o Ionizing radiation o Poor choice for posterior fossa lesions-distortion o Contrast allergy-iodine  30k 2-4 mm x-ray beams computed into a single image  x-ray beam is rotated around the patient to take many different views of a single slice of the patient  data is reconstructed by a computer to obtain a detailed image of all the structures in the slice  amount of energy absorbed depends on the density of the tissues o hyperdense-whiter (bone)  calcium  metal  blood o hypodense-darker (fat)  air  gliosis-scar tissue  tissue loss  edema  white matter is darker than gray matter due to myelination o isodense-gray (CSF)  can be used to visualize a variety of different intracranial abnormalities o cerebral infarctions  cannot be seen y the CT in the first 6-12 hours  cell death and edema leas to an area of hypodensity seen near the distribution of the area of ischemia  there will be distortion of the local anatomy due to the edema (longitudinal fissure)  over weeks to months, the brain tissue may be present as a result of gliosis and brain necrosis replaced by CSF o neoplasms  may appear hypodense, hyperdense, or isodense depending on the type and stage  may contain areas of calcification, hemorrhage, or fluid filled cysts  edema (hypodense)  IV contrast dye is helpful in this diagnosis o mass effect  any thing that distorts the brain’s visual anatomy by displacement  can occure with edema, neoplasm, hemorrhage  detected by compression of the ventricles, effacement of the sulci, loss of cortical structure o hemorrhage: depends on how recently it has occurred.  Fresh ICH coagulates immediately and shows up as hyperdense.  As clot is broken down after a week it becomes isodense  After 2-3 weeks it becomes hypodense Magnetic Resonance Imaging  Strong magnetic field aligns protons along the longitudinal orientation of the applied field  A radiofrequency pulse shifts the proton alignment axis from the longitudinal to transverse planes  When the RF pulse is stopped, the protons realign to the applied magnetic field  The radiofrequency energy that was absorbed and then released results in an electric current that is detected by the electromagnetic receiver coils  ICH goes under changes on MRI images o First 6-24 hours- T1 gray, T2 light Gray o 1-5 days- T1, Gray, T2 Dark Gray o 3-7days- T1 White, T2 Dark gray o 3-30 days- T1 White, T2 white o >14 days- T1 dark gray, T2 black  T1 o Best of anatomy details o CSF is black  T1 with contrast o Shows inflammatory, vascular and some neoplastic lesions  T2 o Best for white matter lesions (MS) o CSF white  FLAIR o Same as T2 but with CSF subtracted  Diffusion with weighted o Shows the movement of water across membranes o Altered when Na, K, ATP dependent pump damaged (anoxia)  Advantages o High resolution o No ionizing radiation o Contrast allergy is rare o No bony artifacts  Disadvantages o Requires patient cooperation o Cannot be used with ferromagnetic implants (pacemaker, bladder stimulus, cochlear implant) o Contrast-induced renal damage o Costs  CT vs T2 weighted MRI o Bright on T2 MRI dark on CT o Dark on T2 MRI bright on CT o Except  fat-bright on CT and T2  Blood <48 hrs-dark on T2  Blood > 48 hours bright on T2 Positron Emission Tomography  Measures regional concentration of systemically administered tracers (eg18F-deoxyglucose, H2 15O)  Expensive as requires a linear accelerator  Applications include grading brain tumors, distinguishing types of dementia, confirming PD  Often used in Oncology  $$$$$  Red= High metabolism of glucose  Blue/purple=low metabolism of glucose (common in Alzheimer’s patient in the frontal and parietal lobe) Functional MRI  Localizes cerebral activity in healthy vs diseased brains=look at differences (diseased should have more surface area due to it working harder in that area)  Based on flood flow (hemoglobin concentration)  Advantages of PET o Non invasive o Higher resolution Doppler US   can be used to measure flow and lumen diameter of large BV in the head and neck most useful for assessing the proximal internal carotid to help with decisions for possible surgery in carotid stenosis  accurate and harmless  smaller arteries cannot be assessed  often used in ICU to detect vasospasm following subarachnoid hemorrhage  cannot detect aneurysms or other vascular abnormalities Neuroangiography  used to visualize lesions of the BV  used with other imaging techniques such as x-rays, ct, or MRI  evaluates for CVD, aneurysms, vascular malformations  invasive-undergo local anesthesia and catheter is inserted in the femoral artery to aorta under x-ray guidance where dye is injected Electroencephalography  measures brain electrical activity of cortical neurons that are regulated by subcortical structures and used in the diagnosis of epilepsy, metabolic disorders, sleep disorders  alpha rhythm seen posteriorly when eyes closed and patient is relaxed Electrodiagnostics: Evoked potentials  measures conduction velocity in special sensory (visual evoked, auditory evoked) and general sensory (somatosensory evoked) pathways  used in MS (visual-evoked)  BS or SC lesions Electromyography  Measures electrical activity in muscles  Monpolor needle electrodes  Surface electrodes  Looks at neuropathic vs myopathic changes Nerve conduction studies  Measures velocity of nerve conduction  Assists in diagnosis of peripheral nerve problems such as demyelination and entrapment  Only large nerves evaluated (1A alpha)  Measure how long AP gets to recording electrode Lumbar Puncture  Spinal tap  Obtain CSF  Analyze color, cell count, protein and glucose level  Special test for specific diagnostic considerations (MS, malignancy)  Normal o Glucose 2/3 serum glucose o Protein 25-45 o Cells < 8 monocytes  Bacterial meningitis o Glucose <40 o Protein 100-500 o Cells 1k- 10k (90% PMNL’s)  Viral meningitis o Glucose N o Protein slightly elevated o Cells <100 Monocytes  Tuberculosis o Glucose <40 o Protein 100-200 o Cells 100-300 (<50% PMNL’s)  Ca meningitis o Glucose <40 o Protein 100-200 o Cells N to slightly elevated (malignant cells)
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            