Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Random Variables and
Stochastic Processes โ€“ 0903720
Dr. Ghazi Al Sukkar
Email: ghazi.alsukkar@ju.edu.jo
Office Hours: will be posted soon
Course Website:
http://www2.ju.edu.jo/sites/academic/ghazi.alsukkar
Most of the material in these slide are based on slides prepared by Dr. Huseyin Bilgekul
http://faraday.ee.emu.edu.tr/ee571/
1
Cumulative Distribution Function (CDF)
โ€ข
Since the elements of S that are contained in the event
๐‘‹ โ‰ค ๐‘ฅ changes as the number ๐‘ฅ takes various values,
then ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ is a number that depends on ๐‘ฅ.
โ€ข Definition
If X is a random variable define over S, then the
function F defined on (๏€ญ๏‚ฅ, ๏‚ฅ) by
๐น๐‘‹ ๐‘ฅ = ๐‘ƒ ๐œ โˆˆ ๐‘†: ๐‘‹(๐œ) โ‰ค ๐‘ฅ = ๐‘ƒ(๐‘‹ ๏‚ฃ ๐‘ฅ)
is called the distribution function or cumulative
distribution function (CDF) of X.
โ€ข The CDF gives a complete description of the
random variable.
2
โ€ข Example: In the die experiment, the random variable is
such that ๐‘‹ ๐œ๐‘– = ๐‘–, if the die is fair, then the CDF is a
staircase function.
โ€ข ๐น 9 =๐‘ƒ ๐‘‹โ‰ค9 =๐‘ƒ ๐‘† =1
โ€ข ๐น 3 = ๐‘ƒ ๐‘‹ โ‰ค 3 = ๐‘ƒ ๐œ1 , ๐œ2 , ๐œ3 =
3
6
โ€ข ๐น 3 = ๐‘ƒ ๐‘‹ โ‰ค 3.4 = ๐‘ƒ ๐œ1 , ๐œ2 , ๐œ3 =
3
6
3
Properties of CDF
Properties
1. 0 โ‰ค ๐น๐‘‹ (๐‘ฅ) โ‰ค 1 (this follows from Axiom 1 of probability).
2. ๐น๐‘‹ (๐‘ฅ) is nondecreasing, ๐น๐‘‹ ๐‘ฅ1 โ‰ค ๐น๐‘‹ ๐‘ฅ2 if ๐‘ฅ1 < ๐‘ฅ2 (this is
because event ๐‘‹ โ‰ค ๐‘ฅ1 โŠ‚ ๐‘‹ โ‰ค ๐‘ฅ2 ).
3. ๐น๐‘‹ +โˆž = 1, since ๐‘‹ โ‰ค โˆž = ๐‘†.
4. ๐น๐‘‹ โˆ’โˆž = 0, since ๐‘‹ โ‰ค โˆ’โˆž = โˆ….
5. If ๐น๐‘‹ ๐‘ฅ๐‘œ = 0 then, ๐น๐‘‹ ๐‘ฅ๐‘œ = 0, โˆ€๐‘ฅ โ‰ค ๐‘ฅ๐‘œ .
6. ๐‘ƒ ๐‘‹ > ๐‘ฅ = 1 โˆ’ ๐น๐‘‹ (๐‘ฅ), since ๐‘‹ โ‰ค ๐‘ฅ โˆช ๐‘‹ > ๐‘ฅ = ๐‘† and
they are mutually exclusive events.
7. ๐น๐‘‹ (๐‘ฅ) is continuous from the right. lim ๐น๐‘‹ (๐‘ฅ +
๐œ–โ†’0
๐œ–>0
4
8. ๐‘ƒ ๐‘ฅ1 < ๐‘‹ โ‰ค ๐‘ฅ2 = ๐น๐‘‹ ๐‘ฅ2 โˆ’ ๐น๐‘‹ ๐‘ฅ1 . since ๐‘‹ โ‰ค
5
Discrete-Type RV
โ€ข ๐‘‹ is a discrete RV if ๐น๐‘‹ (๐‘ฅ) is a staircase
function โŸน ๐‘ฅ๐‘– is a discontinuity point.
โˆ’
โ€ข ๐‘ƒ ๐‘‹ = ๐‘ฅ๐‘– = ๐น๐‘‹ ๐‘ฅ๐‘– โˆ’ ๐น๐‘‹ ๐‘ฅ๐‘– = ๐‘๐‘–
โ€ข ๐น๐‘‹ ๐‘ฅ = ๐‘–๐‘˜=โˆ’โˆž ๐‘๐‘˜ , ๐‘ฅ๐‘– โ‰ค ๐‘ฅ < ๐‘ฅ๐‘–+1
โ€ข ๐‘˜ ๐‘๐‘˜ = 1
๐‘๐‘–
๐‘ฅ๐‘–
6
Continuous-Type RV
โ€ข ๐‘‹ is a continuous RV if ๐น๐‘‹ (๐‘ฅ) is a continuous
function.
โˆ’
โ€ข ๐น๐‘‹ ๐‘ฅ = ๐น๐‘‹ ๐‘ฅ โŸน ๐‘ƒ ๐‘‹ = ๐‘ฅ = 0
7
โ€ข Mixed RV.
8
Percentiles
โ€ข The ๐‘ข percentile of an RV ๐‘‹ is the smallest
number ๐‘ฅ๐‘ข such that:
๐‘ข = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ๐‘ข = ๐น๐‘‹ (๐‘ฅ๐‘ข )
โ€ข ๐‘ฅ๐‘ข is the inverse of the function ๐‘ข = ๐น๐‘‹ (๐‘ฅ)
โ€ข The median of ๐‘‹ is the smallest number ๐‘š
such that ๐น๐‘‹ ๐‘š = 0.5 โŸน ๐‘š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ 50%
percentile of ๐‘‹.
9
Example
The distribution function of a random variable X is given by
๏ƒฌ0
๏ƒฏx
4
๏ƒฏ
๏ƒฏ
F ( x) ๏€ฝ ๏ƒญ 12
๏ƒฏ1 x๏€ซ 1
2
๏ƒฏ 12
๏ƒฏ
๏ƒฎ1
x๏€ผ0
0 ๏‚ฃ x ๏€ผ1
1๏‚ฃ x ๏€ผ 2
2๏‚ฃ x๏€ผ3
x๏‚ณ3
Compute the following quantities๏ผš
(a) P(X < 2)
(b) P(X = 2)
(d) P(X > 3/2)
(e) P(X = 5/2)
(c) P(1๏‚ฃ X < 3)
(f) P(2<X ๏‚ฃ 7)
10
Example
For the experiment of flipping a fair coin twice, let
X be the number of tails and calculate F(t), the
distribution function of X, and then sketch its
graph.
Sol๏ผš
๏ƒฌ0
๏ƒฏ1 / 4
๏ƒฏ
Ans : F (t ) ๏€ฝ ๏ƒญ
๏ƒฏ3 / 4
๏ƒฏ๏ƒฎ1
t ๏€ผ 0,
0 ๏‚ฃ t ๏€ผ 1,
1 ๏‚ฃ t ๏€ผ 2,
t ๏‚ณ 2.
11
Example
Suppose that a bus arrives at a station every day
between 10:00 Am and 10:30 AM, at random. Let X
be the arrival time; find the distribution function
of X, F(t), and then sketch its graph.
Sol๏ผš
t ๏€ผ 10,
๏ƒฌ0
๏ƒฏ
Ans : F (t ) ๏€ฝ ๏ƒญ2(t ๏€ญ 10) 10 ๏‚ฃ t ๏€ผ 10.5,
๏ƒฏ1
t ๏‚ณ 10.5.
๏ƒฎ
12
Example
The sales of a convenience store on a randomly selected
day are X thousand dollars, where X is a random variable
with a distribution function of the following form๏ผš
t ๏€ผ0
๏ƒฌ0
๏ƒฏ1 t 2
0 ๏‚ฃ t ๏€ผ1
๏ƒฏ2
F (t ) ๏€ฝ ๏ƒญ
2
k
(
4
t
๏€ญ
t
) 1๏‚ฃ t ๏€ผ 2
๏ƒฏ
๏ƒฏ
t ๏‚ณ 2.
๏ƒฎ1
Suppose that this convenience storeโ€™s total sales on any
given day are less than $2000.
(a) Find the value of k.
(b) Let A and B be the events that tomorrow the storeโ€™s
total sales are between 500 and 1500 dollars, and
over 1000 dollars, respectively. Find P(A) and P(B).
(c) Are A and B independent events?
13
Probability Density Function (pdf)
โ€ข The pdf is defined as the derivative of the cdf:
๐‘‘๐น๐‘‹ (๐‘ฅ)
๐‘“๐‘‹ (๐‘ฅ) โ‰œ
๐‘‘๐‘ฅ
๐‘ฅ
โŸน ๐น๐‘‹ ๐‘ฅ =
Since
๐‘‘๐น๐‘‹ (๐‘ฅ)
๐‘‘๐‘ฅ
=
๐‘“๐‘‹ ๐‘ข ๐‘‘๐‘ข
โˆ’โˆž
๐น๐‘‹ ๐‘ฅ+โˆ†๐‘ฅ โˆ’๐น๐‘‹ (๐‘ฅ)
lim
โˆ†๐‘ฅ
๐‘ฅโ†’0
โ‰ฅ 0,
from the monotone-nondecreasing nature of
๐น๐‘‹ (๐‘ฅ), it follows that ๐‘“๐‘‹ (๐‘ฅ) โ‰ฅ 0 for all ๐‘ฅ.
14
โ€ข It follows that:
๐‘ฅ2
๐‘ƒ ๐‘ฅ1 < ๐‘‹ โ‰ค ๐‘ฅ2 = ๐น๐‘‹ ๐‘ฅ2 โˆ’ ๐น๐‘‹ ๐‘ฅ1 =
๐‘“๐‘‹ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ฅ1
FX (x)
1
โ€ข ๐‘ƒ ๐‘ฅ โ‰ค ๐‘‹ โ‰ค ๐‘ฅ + โˆ†๐‘ฅ โ‰… ๐‘“๐‘‹ (๐‘ฅ)โˆ†๐‘ฅ
Provided that โˆ†๐‘ฅ is sufficiently small.
x
x1 x2
f X (x)
x
x1 x2
โ€ข The probability that ๐‘‹ is in a small interval โˆ†๐‘ฅ is proportional to
๐‘“๐‘‹ (๐‘ฅ) and it is maximum if that interval contains the point ๐‘ฅ๐‘š ,
where๐‘“๐‘‹ (๐‘ฅ) is maximum.
๐‘ฅ๐‘š is called the mode (most likely value of ๐‘‹).
Note: an RV is called unimodal if it has a single mode.
15
โ€ข Basic properties of pdf:
1. ๐‘“๐‘‹ (๐‘ฅ) โ‰ฅ 0.
2.
โˆž
๐‘“
โˆ’โˆž ๐‘‹
๐‘ฅ ๐‘‘๐‘ฅ = 1.
3. In general, ๐‘ƒ ๐‘‹ โˆˆ ๐ด =
๐ด
๐‘“๐‘‹ ๐‘ฅ ๐‘‘๐‘ฅ.
16
Pdf for Discrete Random Variables
The pfd for discrete RV is:
๐‘“๐‘‹ ๐‘ฅ = ๐‘– ๐‘๐‘– ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ๐‘– )
It is known as probability mass function (pmf).
๐‘๐‘– = ๐‘ƒ ๐‘‹ = ๐‘ฅ๐‘–
๐‘ฅ๐‘– s represent the discontinuity points.
Again: ๐น๐‘‹ ๐‘ฅ = ๐‘–๐‘˜=โˆ’โˆž ๐‘๐‘˜ , ๐‘ฅ๐‘– โ‰ค ๐‘ฅ < ๐‘ฅ๐‘–+1
๐‘˜ ๐‘๐‘˜ = 1
f X (x )
pi
xi
x
17
Example
In the experiment of rolling a balanced die twice,
let X be the maximum of the two numbers
obtained. Determine and sketch the probability
mass function and the distribution function of X.
Sol๏ผš
x ๏€ผ 1,
๏ƒฌ0
๏ƒฏ1 / 36
๏ƒฏ
๏ƒฏ4 / 36
๏ƒฏ
Ans : F ( x) ๏€ฝ ๏ƒญ9 / 36
๏ƒฏ16 / 36
๏ƒฏ
๏ƒฏ25 / 36
๏ƒฏ
๏ƒฎ1
1 ๏‚ฃ x ๏€ผ 2,
2๏‚ฃ x๏€ผ3
3 ๏‚ฃ x ๏€ผ 4.
4 ๏‚ฃ x ๏€ผ 5,
5 ๏‚ฃ x ๏€ผ 6,
x ๏‚ณ 6.
18
Example
Can a function of the form
๏ƒฌc( 23 ) x x ๏€ฝ 1,2,3,...
p ( x) ๏€ฝ ๏ƒญ
elsewhere.
๏ƒฎ 0
be a probability mass function ?
Sol๏ผš
19
Example
Let X be the number of births in a hospital until
the first girl born. Determine the probability
mass function and the distribution function of X.
Assume that the probability is 1/2 that a baby
born is a girl.
Sol๏ผš
t ๏€ผ 1,
๏ƒฌ0
Ans : F (t ) ๏€ฝ ๏ƒญ
n ๏€ญ1
1
๏€ญ
(
1
/
2
)
n ๏€ญ 1 ๏‚ฃ t ๏€ผ n, n ๏€ฝ 2,3,4,๏Œ.
๏ƒฎ
20
Related documents