* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 2 Principles of Ecology
Biogeography wikipedia , lookup
Sustainable agriculture wikipedia , lookup
Soundscape ecology wikipedia , lookup
Natural environment wikipedia , lookup
History of wildlife tracking technology wikipedia , lookup
Microbial metabolism wikipedia , lookup
Lake ecosystem wikipedia , lookup
Chapter 2 Principles of Ecology 2.1 Organisms and Their Relationships 1 What is ecology?  Oikos Greek for “homestead”  Ology means “study of”  Scientific study of interactions among organisms and their environment  Reveals relationships among living things (biotic) and nonliving (abiotic) parts of the world 2 What is ecology? Uses both quantitative and descriptive research  Combines information and techniques from many scientific fields:  – – – – – Mathematics Chemistry Physics Geology And many others 3 Aspects of Ecological Study  Biosphere: portion of the Earth that supports life – High in atmosphere to bottom of ocean – Extends several kilometers above the Earth’s surface and several kilometers below the surface of the ocean – Comparable to peel of an apple – Very diverse climate 4 Living thing affected by:  Abiotic factors – – – – – – – Air currents Temperature Moisture Light Soil composition Terrain And many others 5 Living thing affected by:  Biotic factors – Same species for protection, competition, food, and reproduction – Other species for all but reproduction Tree decay 6 Levels of Organization in Ecology Need to study more than just an individual to get the whole story  Need to study relationships or interactions among organisms of the same and different species  7 Levels of Organization in Ecology ◊Biosphere – Biome Ecosystem – Community  Population - Organism 8 Populations  A group of organisms of one species that interbreed and live together in the same place at the same time 9 Populations  Compete with each other for food, water, space, light and other resources in short supply  How organisms share resources determines how far apart they live and how large a population gets 10 Populations  Some species reduce competition by larvae and adult stages living in different environments and using different resources as food (frogs and many insects) 11 Individuals Interact within Communities  Community: collection of interacting populations (all the populations at one place and time)  Change in one population will cause change in another population – Small changes – Large changes 12 Interactions among living things and abiotic factors  Ecosystem: interaction of populations in a community and nonliving (physical) surroundings  Three kinds of ecosystems – Terrestrial (land) – Fresh water – Marine: 75% of the earth 13 Organisms in Ecosystems  Habitat: place where an organism lives its life (home) 14 Organisms in Ecosystems  Niche: the role and position a species plays in its environment – All the interactions with abiotic and biotic factors – Everything the species does – How it uses resources – Its job 15 Organisms in Ecosystems  Even though two species occupy the same habitat, they do not occupy the same niche because resources (food, shelter) are used in different ways  It is an advantage for a species to occupy a different niche, unique strategies are important to reduce competition 16 Organisms in Ecosystems 17 Symbiosis  Permanent, close association between two or more organisms of different species  Three types of symbiosis – Commensalism – Mutualism – Parasitism 18 Commensalism  One species benefits, other species not harmed or benefited  Few examples because further study usually reveals mutualism or parasitism 19 Commensalism Cattle egrets follow cattle to feed on the insects stirred up by the grazing cattle.  Egret benefits as it gets more food  Cattle is neither helped nor harmed  20 Commensalism Orchids growing on trees have a home and moisture  Orchids benefit while the tree is not affected  21 Mutualism  Both species benefit 22 Mutualism A remarkable 3-way mutualism appears to have evolved between an ant, a butterfly caterpillar, and an acacia in the American southwest. The caterpillars have nectar organs which the ants drink from, and the acacia tolerates the feeding caterpillars. The ants appear to provide some protection for both plant and caterpillar. Research of Diane Wagner, American Museum of Natural History Southwestern Research Station 23 Mutualism  Ants “tending” soybean aphids 24 Parasitism  One organism benefits the other is harmed but usually not killed Ticks Ring Worm 25 Chapter 2 Principles of Ecology 2.2 Flow of Energy in an Ecosystem 26 How Organisms Obtain Energy  Ultimate source of energy is the sun  Producers use the sun’s energy to make food  Consumers eat producers and other consumers 27 How Organisms Obtain Energy  Autotrophs: energy “auto” = self; “troph”= – Most are photoautotrophs: organisms that use the sun’s energy to make food in the process of photosynthesis; all have chlorophyll – Some are chemoautotrophs; make food by using energy stored in chemical bonds (some Archaebacteria) 28 Photoautotrophs Cyanobacteria Plants Algae 29 How Organisms Obtain Energy  Heterotrophs: “hetero”= other; “troph”= energy – Can’t make food so must feed on other organisms – Herbivores: only eat autotrophs – Carnivores: only eat other heterotrophs – Omnivore: eat both autotrophs and heterotrophs 30 How Organisms Obtain Energy  Heterotrophs: “hetero”= other; “troph”= energy, cont. – Scavengers: feed on dead (carrion and refuse) – Decomposers: breakdown and absorb nutrients from dead organisms (fungi, protozoans, many bacteria) 31 Heterotrophs Carnivore Decomposer Scavenger Herbivore 32 How Organisms Obtain Energy  Detritivores – Eat fragments of dead matter in an ecosystem, and return nutrients to the soil, air, and water where the nutrients can be reused by organisms. – Also considered heterotrophs 33 Matter and Energy Flow Food Chains: simple model to show energy flow in an ecosystem; one possible route  Food web: several interconnected food chains  – shows that an organism occupies more than one trophic level – Expresses more possible feeding relationships at each trophic level – More realistic than a food chain 34 Food Chain  Arrows indicate direction energy flows  Usually 3 to 5 trophic (energy) levels  On average only 10% of energy is transferred to next trophic level – Most energy is lost as heat – Also lost as urine, feces and other 35 Food Chain Top Carnivore Carnivore Omnivore Herbivore Producer 36 Food Web 37 Food Web  Trophic level is one step in a food chain  Organisms can occupy more than one trophic level  Important part of organism’s niche is how it obtains energy 38 Energy and Trophic Levels Energy Pyramid 39 Energy Pyramids  Pyramid of Numbers – Count the number of organisms at each level – Numbers decrease as move up the pyramid – Not always reveals true relationship as one tree (producer) could support 50,000 insects (herbivore) 40 Energy Pyramids  Pyramid of Biomass – Use dry weight of organisms at each level 41 Energy Pyramids Pyramid of Numbers Pyramid of Biomass 42 Chapter 2 Principles of Ecology 2.3 Cycling of Matter 43 Cycles in Nature Energy flows, nutrients cycle  Atoms of carbon, nitrogen and other elements in your body today made up the bodies of other organisms  Matter including nutrients are constantly recycled  The cycling of nutrients in the biosphere involves both matter in living organisms and physical processes found in the environment such as weathering.  44 45 46 Nitrogen Cycle 47 Phosphorus Cycle 48 49
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            