Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Continuous Random Variables Reading: Chapter 3.1 – 3.8 Homework: 3.1.2, 3.2.1, 3.2.4, 3.3.2, 3.3.7, 3.4.4, 3.4.5, 3.4.9, 3.5.3., 3.5.6, 3.6.1, 3.6.6, 3.7.1, 3.7.3, 3.7.11, 3.8.1. Cumulative Distribution Function CDF of a random variable X is: FX(x) = P[X≤x] X is a continuous random variable if FX(x) is continuous. (the range of X contains a continuous interval) Example: X: a random integer between 0 and 4. SX={0,1,2,3,4} PX(x) = 0.2 for x=0,1,2,3,4 and 0 otherwise FX(x) is an non-decreasing piece-wise constant function that is not continuous at x=0,1,2,3,4 Y: a random real number between 0 and 4. SY =[0,4] is a continuous region, not a countable set. 0 FY[y] = P[Y≤y] = ? FY ( y ) = y / 4 PY[Y=y] = ? 1 G. Qu ENEE 324 Engineering Probability y<0 0≤ y≤4 y>4 2 1 Properties of CDF Theorem 3.1: for any random variable X FX(-∞) = 0, FX(∞) = 1 FX(x) = 0 for x<xmin, FX(x) = 1 for x ≥xmax FX(x) ≥ FX(x’) if x≥x’ FX(x) – FX(x’) = P[x’< X ≤ x] Example: Quiz 3.1 P[Y≤-1] P[Y≤1] P[2<Y≤3] P[Y>1.5] G. Qu y<0 0 FY ( y ) = y / 4 0 ≤ y ≤ 4 1 y>4 ENEE 324 Engineering Probability 3 Probability Density Function The PDF of a continuous random variable X is f X ( x) = dFX ( x) F ( x + ∆) − FX ( x) = lim X ∆ → 0 dx ∆ What does PDF tell directly? large fX(x) implies that FX(x) increases fast at x. fX(x) is the slope of CDF at x, it measures how fast CDF FX(x) increases. large fX(x) implies that higher probability that X has value close to x. Similar to PX(x). f X ( x) ∆ = FX ( x + ∆ ) − FX ( x) = P[ x ≤ X ≤ x + ∆ ] G. Qu ENEE 324 Engineering Probability 4 2 Properties of PDF Theorem 3.2: for any random variable X fX(x) ≥ 0 FX (x) = ∫ ∞ −∞ ∫ x −∞ f X ( t ) dt f X ( t ) dt = F X ( ∞ ) = 1 Theorem 3.3: ∫ x2 x1 f X ( t ) dt = P [ x1 ≤ X ≤ x 2 ] Example: Problem 3.2.5 Find the conditions for a and b to make fX(x) a valid PDF. ax 2 + bx 0 ≤ x ≤ 1 f X ( x) = otherwise 0 G. Qu ENEE 324 Engineering Probability 5 Expected Values For discrete r.v. X, E[X] = ∑ xPX(x) ∞ For continuous r.v X, E[ X ] = ∫ xf X ( x)dx ∞ −∞ Theorem 3.4: E[ g ( X )] = ∫−∞ g ( x) f X ( x)dx Theorem 3.5: E[X-µX] = 0 E[aX+b] = aE[X]+b Var[X] = E[X2] – E[X]2 Var[aX+b] = a2Var[X] G. Qu ENEE 324 Engineering Probability 6 3 In-class Quiz Quiz 3.3: Given the PDF of r.v. Y below, find Expected value: E[Y]=? Second moment: E[Y2]=? Variance: Var[Y]=? Standard deviation: σY=? 3 y 2 / 2 − 1 ≤ x ≤ 1 fY ( y ) = otherwise 0 G. Qu ENEE 324 Engineering Probability 7 Uniform Random Variable Discrete Continuous 1 x = a, a + 1,..., b PX ( x) = b − a + 1 0 otherwise 0 x − a + 1 FX ( x) = b − a +1 1 x<a a≤ x≤b x>b 1 f X ( x) = b − a 0 0 x−a FX ( x) = b − a 1 a≤ x≤b otherwise x<a a≤ x≤b x>b E[X] = (a+b)/2 E[X] = (a+b)/2 Var[X] = (b-a)(b-a+2)/12 Var[X] = (b-a)2/12 G. Qu ENEE 324 Engineering Probability 8 4 Example: Quiz 3.4* X: uniform continuous r.v. E[X] = 3 Var[X] = 3 Find PDF. Solve for a and b with a<b E[X]=(a+b)/2 = 3 Var[X] = (a-b)2/12 = 3 ⇒ a=0, b=6 G. Qu 1 f X ( x) = 6 0 0≤ x≤6 otherwise ENEE 324 Engineering Probability 9 Exponential Random Variable Continuous (λ >0) λ e − λx f X ( x) = 0 E[X] = 1/ λ Var[X] = 1/λ2 G. Qu K = X: discrete r.v. x≥0 x<0 1 − e − λ x FX ( x ) = 0 discretization (λ >0) x≥0 otherwise PK(k) = P[K=k] = fX(k1<X≤k] = FX(k)-FX(k-1) = e-λ(k-1)(1-e-λ) PK(k) = p(1-p)k-1 Geometric r.v. E[K] = 1/ p Var[K] = (1-p)/p2 ENEE 324 Engineering Probability 10 5 Example: Quiz 3.4 X: exponential continuous r.v. E[X] = 3 Var[X] = 9 Find PDF. Solve for λ E[X] = 1/ λ = 3 Var[X] = 1/λ = 9 2 ⇒λ = 1/3 G. Qu 1 − x / 3 e f X ( x) = 3 0 x≥0 otherwise ENEE 324 Engineering Probability 11 Example 3.14 T: length of a phone call, exponential (λ=1/3) RA: charge by A, $.15/min for T RB: charge by B, $.15/min for T E[RB]=? 0.15*E[T] = 0.15/λ = $0.45 What random variable is T? E[RA]=? G. Qu 0.15*E[T] = 0.15/(1-e-1/3) ≈ $0.53 ENEE 324 Engineering Probability 12 6 Erlang Random Variable Erlang (n, λ >0) λ n x n −1 e − λ x f X ( x ) = ( n − 1)! 0 Erlang (1, λ): exponential x≥0 λe − λx f X ( x) = 0 x<0 k −λx n−1 (λx) e 1− ∑ k =0 FX ( x) = k! 0 E[X] = n/ λ Var[X] = n/λ2 G. Qu x≥0 x<0 x≥0 Poisson (α) o.w. α k e −α / k! k ≥ 0 PK (k ) = 0 k <0 FK (n − 1) = ∑k =0 n −1 ENEE 324 Engineering Probability ( λx ) k e − λx k! 13 Erlang: PDF ⇔ CDF See handout. G. Qu ENEE 324 Engineering Probability 14 7 Gaussian Random Variables Gaussian (µ,σ), normal N[µ,σ2]: f X ( x) = − 1 2πσ 2 e ( x− µ )2 2σ 2 Theorem 3.12: For Gaussian (µ,σ) random variable X, E[X] = µ, Var[X] = σ2 G. Qu ENEE 324 Engineering Probability 15 Proof of Theorem 3.12 See handout. G. Qu ENEE 324 Engineering Probability 16 8 Standard Normal Random Variable Standard normal r.v.: Gaussian (0,1), N[0,1]. CDF of N[0,1]: Φ(z) = Theorem 3.15: Φ(-z) = 1 – Φ(z) 1 2π ∫ z e −u −∞ 2 /2 du Complementary CDF: Q(z) = P[Z>z] = 1 – Φ(z) G. Qu ENEE 324 Engineering Probability 17 Proof of Theorem 3.15 See handout. G. Qu ENEE 324 Engineering Probability 18 9 Linear Transform of a Gaussian Random Variable X: Gaussian (µ,σ) random variable Define Y=aX+b FY(y) = P[Y ≤y] = P[aX+b ≤y] = P[X≤ (y-b)/a] = FX((y-b)/a) fY(y) = (d/dy)(FX((y-b)/a)) = fX((y-b)/a)) (1/a) Plug in the definition of fX(x), we can see that Y is Gaussian. This is for a>0. Similarly we can show this is true for a<0 and a=0. Theorem 3.13: For any Gaussian (µ,σ) random variable X, Y=aX+b is Gaussian (µ’,σ’), where µ’ = aµ+b and σ’=aσ. G. Qu ENEE 324 Engineering Probability 19 More on Gaussian Random Variables From Theorem 3.13, we can find a linear transformation between two Gaussian random variables. So any Gaussian (µ,σ) random variable X can be expressed as σY + µ where Y is N[0,1] , and Theorem 3.14: The CDF of Gaussian (µ,σ) x−µ random variable X is FX ( x) = Φ ( ) σ We can get the CDF of all Gaussian r.v. for the values of Φ(z) (z≥0, see table 3.1). G. Qu ENEE 324 Engineering Probability 20 10 Examples Example 3.16, 3.17: X is a Gaussian (61,10) random variable P[X≤46]=? P[51<X≤71]=? Quiz 3.5 X is N[0,1], Y is N[0,2] P[-1<X≤1], P [-1<Y≤1], P[X>3.5], P[Y>3.5] G. Qu ENEE 324 Engineering Probability 21 Derived Random Variable Y=aX Y=aX, where a>0 CDF: FY(y) = P[aX≤y] = P[X≤y/a] = FX(y/a) PDF: fY(y) = (d/dy) FY(y) = (1/a) fX(y/a) Special cases: X: uniform (b,c) Y: uniform (ab, ac) X: exponential (λ) Y: exponential (λ/a) X: Erlang (n, λ) Y: Erlang (n, λ/a) X: Gaussian (µ,σ) Y: Gaussian (aµ,aσ) Y=aX, where a<0 CDF: FY(y) = P[aX≤y] = P[X≥y/a] = 1-FX(y/a) PDF: fY(y) = (d/dy) FY(y) = -(1/a) fX(y/a) G. Qu ENEE 324 Engineering Probability 22 11 Derived Random Variable Y=X+b Y=X+b CDF: FY(y) = P[X+b≤y] = P[X≤y-b] = FX(y-b) PDF: fY(y) = (d/dy) FY(y) = fX(y-b) Y will be the same type of random variable as X, with a shift of b to the right. X: uniform (a,c) Y: uniform (a+b, c+b) X: exponential (λ) Y: exponential (λ) for y≥b X: Erlang (n, λ) Y: Erlang (n, λ) for y≥b X: Gaussian (µ,σ) Y: Gaussian (µ,σ) for y≥b G. Qu ENEE 324 Engineering Probability 23 Example: Problem 3.7.10 X: a r.v. with CDF FX(x) Y = 10 if x<0 and -10 if x≥0 Find FY(y) If y<-10 P[Y≤y] = 0 If -10≤y<10, P[Y≤y] = P[x≥0] = 1-FX(0) If y≥10, P[Y≤y] = 1 G. Qu ENEE 324 Engineering Probability 24 12 Derived Random Variable from Uniform (0,1) U: uniform random variable between 0 and 1. G(x) is a CDF for some r.v. and G has an inverse G-1(.) defined on (0,1) Y=G-1(U) for 0<U<1 is a derived r. v. G(.) is a CDF, so G(x) ≥ G(x’) for x≥x’ CDF: FY(y) = P[G-1(U)≤y] = P[U≤G(y)] = G(y) Examples 3.27 and 3.28. Find function g that makes X=g(U) exponential (1). Find function g that makes X=g(U) uniform (a,b). G. Qu ENEE 324 Engineering Probability 25 Conditional PDF and Expectation X: random variable, P[B] >0 for an event B⊂SX the conditional PDF of X given B is defined as f X ( x) f X |B ( x) = P[ B ] 0 x∈B x∉B fX(x) = ∑ fX|Bi(x)P[Bi] for event space {B1,…} E[X|B] = ∫ xfX|B(x)dx Var[X|B]=E[X2|B] – E[X|B]2 E[g(X)] = ∫ g(x) fX|B(x)dx G. Qu ENEE 324 Engineering Probability 26 13 Example W: the waiting time (in minutes) at a bus stop for the next bus, is an exponential random variable with λ = 0.2. What is E[W]? B={W≤10}, what is EW|B(w)? P[B] = P[W≤10] = FW(10) = 1-e-2 fW|B(w) = 0.2e-0.2w/(1-e-2) if w∈[0,10]; 0 o.w. − 0 .2 w EW|B(w) = ∫10 w × 0 . 2 e− 2 0 1− e G. Qu dw = 5 − 10 e2 −1 ENEE 324 Engineering Probability 27 Mixed Random Variables CDF: FX(x) = P[X≤x] Discrete r.v.: FX(x) is piecewise constant with jumps (discontinuous) PMF ⇒ (∑) CDF, E[X], Var[X], … Continuous r.v.: FX(x) is continuous CDF ⇒ (d/dx) PDF ⇒ (∫) CDF, E[X], Var[X], … Mixed r.v.: FX(x) is piecewise continuous with discountinuous G. Qu ENEE 324 Engineering Probability 28 14 Examples 0 x − a + 1 FX ( x) = b − a +1 1 0 y−a FY ( y ) = b − a 1 0 z − a FZ ( z ) = 2(b − a ) 1 G. Qu x<a Are they CDFs? a≤ x≤b Non-negative x>b Non-decreasing y<a a≤ y≤b y>b z<a a≤ z≤b z >b Reach 1 X: discrete uniform (a,b) Y: continuous uniform (a,b) Z: mixed ENEE 324 Engineering Probability 29 Delta (δ) Function Unit impulse (δ) function: The limit of ∆n as n→∞ and dε as ε→0. Sifting property: for any continuous function g(x), ∫g(x) δ(x-c)dx = g(c) where the integral goes from -∞ to ∞ or a to b with a<c<b. 0 if x < 0 ε /2 1 ∫−∞ δ (v)dv = lim∫−ε / 2 dv = 1 if x ≥ 0 ε ε →0 x G. Qu 0 x ≠ 0 ∞ x = 0 δ ( x) = ∫ ∞ −∞ δ ( x)dx = 1 0 ∆n (x) = n 0 dε (x) = 1 ε ENEE 324 Engineering Probability | x |> − 1 2n 1 1 ≤x≤ 2n 2n | x |> ε2 ε ε − ≤x≤ 2 2 30 15 Unit Step Function Definition ∫ δ(v)dv = u(x) ⇒du/dx= δ(x) x<0 x≥0 0 u ( x) = 1 For discrete random variable X: FX(x) = ∑xi∈Sx PX(xi) = ∑xi∈Sx PX(xi)u(x-xi) Define fX(x)=(d/dx)(FX(x)=∑xi∈Sx PX(xi) δ(x-xi) ∫xfT(t)dt = ∑xi∈Sx PX(xi) ∫xδ(t-xi)dt = ∑xi∈Sx PX(xi)u(x-xi) = ∑xi∈Sx PX(xi) = FX(x) ∫ xfX(x)dx = ∑xi∈Sx{PX(xi)(∫xδ(x-xi)dx)} = ∑xi∈SxPX(xi) xi= E[X] recall: ∫g(x) δ(x-c)dx = g(c) fX(x) can be considered as the PDF of X. G. Qu ENEE 324 Engineering Probability 31 Mixed Random Variables X is a mixed r.v. iff fX(x) contains both impulses and non-zero finite values. draw fX(x) with impulses: a ↑ at x, where the impulse occurs, with value PX(x) at the arrowhead. Example 3.19*: Y takes values 1,2,3 with probabilities 1/2, 1/3, and 1/6. Draw PMF, CDF, and PDF of Y 1/2 G. Qu ENEE 324 Engineering Probability 1/3 1/6 32 16 Example 3.21 Y is the length of a phone call. Line is busy or no answer with 1/3; otherwise Y is uniformly distributed between 0 and 3 minutes. CDF: FY(y)=(1/3)u(y) + (1/3+2y/9) (0≤y≤3) PDF: fY(y)=(1/3)δ(y)+2/9 E[Y] = 1 G. Qu 0 1 FY ( y ) = 1 3 2 3 + 3 1 (0≤y≤3) y<0 y 3 y=0 0≤ y<3 y≥3 ENEE 324 Engineering Probability 33 In-class Quiz Given the CDF of a random variable X 0 x + 2 FX ( x) = 4 1 x < −1 −1 ≤ x < 1 x ≥1 What type of r.v. X is? What is P[X≤0]? What is P[X=-1]? Find the PDF fX(x). G. Qu ENEE 324 Engineering Probability 34 17