Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Trig Cheat Sheet Definition of the Trig Functions Right triangle definition Unit Circle Definition For this definition we assume that π 0 < θ < or 0◦ < θ < 90◦ . 2 For this definition θ is any angle. opposite hypotenuse adjacent cos(θ) = hypotenuse opposite tan(θ) = adjacent sin(θ) = hypotenuse opposite hypotenuse sec(θ) = adjacent adjacent cot(θ) = opposite csc(θ) = y =y 1 x cos(θ) = = x 1 y tan(θ) = x sin(θ) = 1 y 1 sec(θ) = x x cot(θ) = y csc(θ) = Facts and Properties Domain The domain is all the values of θ that can be plugged into the function. sin(θ), θ can be any angle cos(θ), θ can be any angle 1 tan(θ), θ 6= n + π, n = 0, ±1, ±2, . . . 2 csc(θ), θ 6= nπ, n = 0, ±1, ±2, . . . 1 sec(θ), θ 6= n + π, n = 0, ±1, ±2, . . . 2 cot(θ), θ 6= nπ, n = 0, ±1, ±2, . . . Period The period of a function is the number, T , such that f (θ + T ) = f (θ). So, if ω is a fixed number and θ is any angle we have the following periods. 2π sin (ω θ) → T = ω 2π cos (ω θ) → T = ω π tan (ω θ) → T = ω 2π csc (ω θ) → T = ω 2π sec (ω θ) → T = ω π cot (ω θ) → T = ω Range The range is all possible values to get out of the function. −1 ≤ sin(θ) ≤ 1 −1 ≤ cos(θ) ≤ 1 −∞ < tan(θ) < ∞ −∞ < cot(θ) < ∞ sec(θ) ≥ 1 and sec(θ) ≤ −1 csc(θ) ≥ 1 and csc(θ) ≤ −1 © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet Formulas and Identities Tangent and Cotangent Identities sin(θ) cos(θ) tan(θ) = cot(θ) = cos(θ) sin(θ) Reciprocal Identities 1 csc(θ) = sin(θ) 1 sec(θ) = cos(θ) 1 cot(θ) = tan(θ) 1 csc(θ) 1 cos(θ) = sec(θ) 1 tan(θ) = cot(θ) sin(θ) = Half Angle Formulas r θ 1 − cos(θ) sin =± 2 2 r θ 1 + cos(θ) cos =± 2 2 s θ 1 − cos(θ) tan =± 2 1 + cos(θ) Half Angle Formulas (alternate form) Pythagorean Identities sin2 (θ) = 12 (1 − cos(2θ)) sin2 (θ) + cos2 (θ) = 1 cos2 (θ) = 12 (1 + cos(2θ)) tan2 (θ) + 1 = sec2 (θ) Sum and Difference Formulas 2 tan2 (θ) = 1 − cos(2θ) 1 + cos(2θ) 1 + cot (θ) = csc2 (θ) sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β) Even/Odd Formulas sin(−θ) = − sin(θ) cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β) csc(−θ) = − csc(θ) cos(−θ) = cos(θ) sec(−θ) = sec(θ) tan(−θ) = − tan(θ) cot(−θ) = − cot(θ) tan(α ± β) = tan(α) ± tan(β) 1 ∓ tan(α) tan(β) Product to Sum Formulas Periodic Formulas sin(α) sin(β) = 12 [cos(α − β) − cos(α + β)] If n is an integer then, cos(α) cos(β) = 12 [cos(α − β) + cos(α + β)] 1 sin(θ + 2πn) = sin(θ) csc(θ + 2πn) = csc(θ) sin(α) cos(β) = 2 [sin(α + β) + sin(α − β)] 1 cos(θ + 2πn) = cos(θ) sec(θ + 2πn) = sec(θ) cos(α) sin(β) = 2 [sin(α + β) − sin(α − β)] tan(θ + πn) = tan(θ) cot(θ + πn) = cot(θ) Sum to Product Formulas α+β α−β sin(α) + sin(β) = 2 sin cos Degrees to Radians Formulas 2 2 If x is an angle in degrees and t is an angle in α+β α−β sin(α) − sin(β) = 2 cos sin radians then 2 2 π t πx 180t = ⇒ t= and x= α+β α−β 180 x 180 π cos(α) + cos(β) = 2 cos cos 2 2 Double Angle Formulas α+β α−β cos(α)−cos(β) = −2 sin sin sin(2θ) = 2 sin(θ) cos(θ) 2 2 cos(2θ) = cos2 (θ) − sin2 (θ) 2 = 2 cos (θ) − 1 = 1 − 2 sin2 (θ) tan(2θ) = 2 tan(θ) 1 − tan2 (θ) Cofunction Formulas π sin − θ = cos(θ) 2π csc − θ = sec(θ) π2 tan − θ = cot(θ) 2 π − θ = sin(θ) 2 π sec − θ = csc(θ) π2 cot − θ = tan(θ) 2 cos © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet For any ordered pair on the unit circle (x, y) : cos(θ) = x and sin(θ) = y Example cos 5π 3 1 = 2 sin 5π 3 √ =− 3 2 © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet Inverse Trig Functions Definition y = tan−1 (x) is equivalent to x = tan(y) Inverse Properties cos cos−1 (x) = x sin sin−1 (x) = x tan tan−1 (x) = x Domain and Range Alternate Notation −1 y = sin (x) is equivalent to x = sin(y) y = cos−1 (x) is equivalent to x = cos(y) Function Domain y = sin−1 (x) −1 ≤ x ≤ 1 y = cos−1 (x) −1 ≤ x ≤ 1 y = tan−1 (x) −∞ < x < ∞ Range π π − ≤y≤ 2 2 0≤y≤π π π − <y< 2 2 cos−1 (cos(θ)) = θ sin−1 (sin(θ)) = θ tan−1 (tan(θ)) = θ sin−1 (x) = arcsin(x) cos−1 (x) = arccos(x) tan−1 (x) = arctan(x) Law of Sines, Cosines and Tangents Law of Sines sin(α) sin(β) sin(γ) = = a b c Law of Cosines a2 = b2 + c2 − 2bc cos(α) b2 = a2 + c2 − 2ac cos(β) c2 = a2 + b2 − 2ab cos(γ) Law of Tangents tan a−b = a+b tan 1 2 (α − β) 1 2 (α + β) tan b−c = b+c tan 1 2 (β − γ) 1 2 (β + γ) tan a−c = a+c tan 1 2 (α − γ) 1 2 (α + γ) Mollweide’s Formula cos 12 (α − β) a+b = c sin 12 γ © Paul Dawkins - https://tutorial.math.lamar.edu