Download trig cheat sheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trig Cheat Sheet
Definition of the Trig Functions
Right triangle definition
Unit Circle Definition
For this definition we assume that
π
0 < θ < or 0◦ < θ < 90◦ .
2
For this definition θ is any angle.
opposite
hypotenuse
adjacent
cos(θ) =
hypotenuse
opposite
tan(θ) =
adjacent
sin(θ) =
hypotenuse
opposite
hypotenuse
sec(θ) =
adjacent
adjacent
cot(θ) =
opposite
csc(θ) =
y
=y
1
x
cos(θ) = = x
1
y
tan(θ) =
x
sin(θ) =
1
y
1
sec(θ) =
x
x
cot(θ) =
y
csc(θ) =
Facts and Properties
Domain
The domain is all the values of θ that can be
plugged into the function.
sin(θ), θ can be any angle
cos(θ), θ can be any angle
1
tan(θ), θ 6= n +
π, n = 0, ±1, ±2, . . .
2
csc(θ), θ 6= nπ, n = 0, ±1, ±2, . . .
1
sec(θ), θ 6= n +
π, n = 0, ±1, ±2, . . .
2
cot(θ), θ 6= nπ, n = 0, ±1, ±2, . . .
Period
The period of a function is the number, T , such
that f (θ + T ) = f (θ). So, if ω is a fixed number
and θ is any angle we have the following
periods.
2π
sin (ω θ)
→
T =
ω
2π
cos (ω θ)
→
T =
ω
π
tan (ω θ)
→
T =
ω
2π
csc (ω θ)
→
T =
ω
2π
sec (ω θ)
→
T =
ω
π
cot (ω θ)
→
T =
ω
Range
The range is all possible values to get out of the function.
−1 ≤ sin(θ) ≤ 1
−1 ≤ cos(θ) ≤ 1
−∞ < tan(θ) < ∞
−∞ < cot(θ) < ∞
sec(θ) ≥ 1 and sec(θ) ≤ −1
csc(θ) ≥ 1 and csc(θ) ≤ −1
© Paul Dawkins - https://tutorial.math.lamar.edu
Trig Cheat Sheet
Formulas and Identities
Tangent and Cotangent Identities
sin(θ)
cos(θ)
tan(θ) =
cot(θ) =
cos(θ)
sin(θ)
Reciprocal Identities
1
csc(θ) =
sin(θ)
1
sec(θ) =
cos(θ)
1
cot(θ) =
tan(θ)
1
csc(θ)
1
cos(θ) =
sec(θ)
1
tan(θ) =
cot(θ)
sin(θ) =
Half Angle Formulas
r
θ
1 − cos(θ)
sin
=±
2
2
r
θ
1 + cos(θ)
cos
=±
2
2
s
θ
1 − cos(θ)
tan
=±
2
1 + cos(θ)
Half Angle Formulas (alternate form)
Pythagorean Identities
sin2 (θ) = 12 (1 − cos(2θ))
sin2 (θ) + cos2 (θ) = 1
cos2 (θ) = 12 (1 + cos(2θ))
tan2 (θ) + 1 = sec2 (θ)
Sum and Difference Formulas
2
tan2 (θ) =
1 − cos(2θ)
1 + cos(2θ)
1 + cot (θ) = csc2 (θ)
sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β)
Even/Odd Formulas
sin(−θ) = − sin(θ)
cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β)
csc(−θ) = − csc(θ)
cos(−θ) = cos(θ)
sec(−θ) = sec(θ)
tan(−θ) = − tan(θ)
cot(−θ) = − cot(θ)
tan(α ± β) =
tan(α) ± tan(β)
1 ∓ tan(α) tan(β)
Product to Sum Formulas
Periodic Formulas
sin(α) sin(β) = 12 [cos(α − β) − cos(α + β)]
If n is an integer then,
cos(α) cos(β) = 12 [cos(α − β) + cos(α + β)]
1
sin(θ + 2πn) = sin(θ) csc(θ + 2πn) = csc(θ) sin(α) cos(β) = 2 [sin(α + β) + sin(α − β)]
1
cos(θ + 2πn) = cos(θ) sec(θ + 2πn) = sec(θ) cos(α) sin(β) = 2 [sin(α + β) − sin(α − β)]
tan(θ + πn) = tan(θ)
cot(θ + πn) = cot(θ)
Sum to Product Formulas
α+β
α−β
sin(α) + sin(β) = 2 sin
cos
Degrees to Radians Formulas
2
2
If x is an angle in degrees and t is an angle in
α+β
α−β
sin(α) − sin(β) = 2 cos
sin
radians then
2
2
π
t
πx
180t
=
⇒
t=
and
x=
α+β
α−β
180
x
180
π
cos(α) + cos(β) = 2 cos
cos
2
2
Double Angle Formulas
α+β
α−β
cos(α)−cos(β) = −2 sin
sin
sin(2θ) = 2 sin(θ) cos(θ)
2
2
cos(2θ) = cos2 (θ) − sin2 (θ)
2
= 2 cos (θ) − 1
= 1 − 2 sin2 (θ)
tan(2θ) =
2 tan(θ)
1 − tan2 (θ)
Cofunction Formulas
π
sin
− θ = cos(θ)
2π
csc
− θ = sec(θ)
π2
tan
− θ = cot(θ)
2
π
− θ = sin(θ)
2
π
sec
− θ = csc(θ)
π2
cot
− θ = tan(θ)
2
cos
© Paul Dawkins - https://tutorial.math.lamar.edu
Trig Cheat Sheet
For any ordered pair on the unit circle (x, y) : cos(θ) = x and sin(θ) = y
Example
cos
5π
3
1
=
2
sin
5π
3
√
=−
3
2
© Paul Dawkins - https://tutorial.math.lamar.edu
Trig Cheat Sheet
Inverse Trig Functions
Definition
y = tan−1 (x) is equivalent to x = tan(y)
Inverse Properties
cos cos−1 (x) = x
sin sin−1 (x) = x
tan tan−1 (x) = x
Domain and Range
Alternate Notation
−1
y = sin
(x) is equivalent to x = sin(y)
y = cos−1 (x) is equivalent to x = cos(y)
Function
Domain
y = sin−1 (x)
−1 ≤ x ≤ 1
y = cos−1 (x)
−1 ≤ x ≤ 1
y = tan−1 (x)
−∞ < x < ∞
Range
π
π
− ≤y≤
2
2
0≤y≤π
π
π
− <y<
2
2
cos−1 (cos(θ)) = θ
sin−1 (sin(θ)) = θ
tan−1 (tan(θ)) = θ
sin−1 (x) = arcsin(x)
cos−1 (x) = arccos(x)
tan−1 (x) = arctan(x)
Law of Sines, Cosines and Tangents
Law of Sines
sin(α)
sin(β)
sin(γ)
=
=
a
b
c
Law of Cosines
a2 = b2 + c2 − 2bc cos(α)
b2 = a2 + c2 − 2ac cos(β)
c2 = a2 + b2 − 2ab cos(γ)
Law of Tangents
tan
a−b
=
a+b
tan
1
2 (α − β)
1
2 (α + β)
tan
b−c
=
b+c
tan
1
2 (β − γ)
1
2 (β + γ)
tan
a−c
=
a+c
tan
1
2 (α − γ)
1
2 (α + γ)
Mollweide’s Formula
cos 12 (α − β)
a+b
=
c
sin 12 γ
© Paul Dawkins - https://tutorial.math.lamar.edu
Related documents