* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Section 4.7 Inverse Trig Functions
Functional decomposition wikipedia , lookup
Big O notation wikipedia , lookup
Continuous function wikipedia , lookup
Dirac delta function wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Principia Mathematica wikipedia , lookup
History of trigonometry wikipedia , lookup
Function (mathematics) wikipedia , lookup
Notes 3.1
PreCalculus
Section 4.7 Inverse Trig Functions
Name:________________________
Review: Evaluate the following trig Functions:
𝜋
𝜋
1. sin(0)
2. cos( 6 )
3. tan( 4 )
𝜋
4. sec( 3 )
5. cos(
𝜋
2
)
What do you remember about Inverse Functions?
The Inverse of the sine function is called the ___________ function. It can also be written as:
Sine Function:
arcsine function:
For example:
For what 𝜃 does sin(𝜃) = ½
Then, the arcsin( ½) =
Keep in mind that inverse functions can only exist if the original function is one-to-one. Are the arcsine
or cosine functions one-to-one?
Definition of the Inverse Trigonometric Functions
Function
Domain
Range
Definition of the Inverse Trigonometric Functions
Function
Domain
Range
Let’s practice:
√3
2
2.)sin-1 ( )
3.) sin-1 2
4.)arccos 2
√2
5.) cos-1(-1)
6.) arctan 0
7.) tan-1(-1)
8.) arcsin 0
9.) arctan (√3)
1.) arcsin(- ½ )
Composition of functions:
Review: Let f(x)= = x – 1 and g(x) = x2 + 2. How do we find find is f(g(2))?
We can do the same thing to evaluate trigonometric functions:
𝜋
2
Arcsin( cos )
cos(arctan (1))
Inverse functions in the calculator:
Good news! We can use our calculator to determine the inverse trig functions of unfamiliar numbers.
10.) arctan(-8.45)
11.) sin-1 0.2447
12.) arccos 2
For all x in the domain of the function and its inverse…
x
f f
1
and f
1
f x =
Inverse Properties of Trig Functions
IF __________________________and _____________________________,
Then
sin arcsin x
and
arcsin sin y
IF __________________________and _____________________________,
Then
cosarccos x
and
arccoscos y
Make sure you
realize that these
properties
are
only valid for the
values that are
acceptable for x
and y!!!
IF __________________________and _____________________________,
Then
tan arctan x
and
arctan tan y
If possible, find the exact values.
1. tan arctan
8
2. arctan tan
3. cos cos 1 (1)
4
How could you evaluate these…
2
3
a. tan arccos
3
5
b. cos arcsin
HW 3-1
Name:_____________________
Precalculus
Section 4.7 Inverse Functions
Use your notes to fill out the following chart. YOU MUST KNOW THE RANGE FOR EACH INVERSE
FUNCTION FOR THE TEST!!!!
Function
Domain
Range
A. Evaluate the following expressions. Find exact values. i.e NO CALCULATORS!!!
5. cos-1
3
2
3. arcsin(-1)
1
2
7. arcsin(-3.14)
2. arccos
1. arcos(.5)
3
2
6. arcsin
4. sin-1
3
2
8. arctan (-1)
B. Evaluate the following composite functions. Use the properties of inverse trigonemtric function if necessary.
Find EXACT VALUES.
)
6
9. arcsin(sin
3
)
4
13. cos-1(tan
10. tan(arctan(.8))
14. csc [sin-1
3
]
2
11. cos{arccos(-0.1)]
12. arcsin(sin3 )
1
]
2
15. tan[cos-1
C. Use triangles and/or formulas to evaluate the following composite functions
3
]
4
17. sin[arctan
5
]
13
19. cos[arcsin
18. cos(tan-1 2)
5
]
12
20. tan[arcsin
]
4
16. cos-1[sin