Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Rational Numbers as Exponents Section 7-5 Objectives • To calculate radical expressions in two ways. • To write expressions with rational exponents as radical expressions and vice versa. • To simplify expressions containing negative rational exponents. • To use rational exponents to simplify radical expressions. Simplify and Compare 3 2  8 and  4  8 and 4 2 3 2 2 Theorem 7-6 For any nonnegative number a, any natural number index k , and any integer m, k a  m  a k m . We can raise to a power and then take a root or we can take a root and then raise to a power. 3  27  729  9 2 3 27 3  2   3  9 2 2  64  4 3 6  2 3  3 6  2 2 2 2 2 2  8 8 4 3  3 5x  5x  3 3 3 3 3 3 3 3  5x 5x 5x  5x 5x  (5x) 2 5x  5x 5x 3  8 2 6y  3 Definition For any nonnegative number a and any 1 ak natural number index k , means k a (the nonnegative kth root of a). 1 2 x  x 1 3 27  27  3  abc  7 3 1 5  abc 5 7 xy   7 xy  1 7 Definition For any natural numbers m and k , and any nonnegative number a,  a k m . m ak k m means a or  27   4 3 2 2 3    3 27  4  2 3 or 27 3 or 4 3 2 Write with rational exponents 3  4 8  8 4 7xy  5  4 3  7xy  5 4 What is Write as a radical 9 1 2 7 1 2  x 3 Write with Rational Exponents 1 3 11 8 5 3x 1 3 Numerator  Exponent Deno min ator  Index / Root 1 3 1 2 x  x x  x 2 6 1 3 3 x  ( x)  x  ( x) 2 3 2 6 3 2 3 3 1 x  ( x ) x  ( x ) x  ( x) 3 2 3 3 http://www.youtube.com/watch?v=-T1punCdxas Negative Rational Exponents m For any rational number and any k positive real number a, 1 m. ak m a k means 1  2 4 1  4 5xy  4  5  1 2 1 5xy  4 5 Variables w/ Exponents • Reminder: When Multiplying Expressions with similar Bases the Exponents ADD! • When Dividing Expressions with similar Bases the Exponents SUBTRACT! x *x  x 2 3 3 23 x 5 x 3 2 1 x x x 2 x Variables w/ Exponents • When Taking an Exponential of an Expression with a similar Base the Exponents MULTIPLY! • Reminder: Negative Exponents mean you TAKE THE RECIPROCAL! (x )  x 2 x 2 3 2*3 x 6 1 1  2 or 2  x 2 x x 2 5 3 5 3 3  3 16 16 1 4 1 2 16 1 1  4 2 3 4 2 3  5 5  16  3 5 5 1 4    72   72  72   2 3 6 12 1 2 Using Rational Exponents to Simplify Radical Expressions • Convert radical expressions to exponential expressions. • Use the properties of exponents to simplify. • Convert back to radical notation when appropriate. Use Rational Exponents to Simplify 6 6 x  3 4 3 6 x 1 6 4  1 2 x 1 2 6    2  x 2 6 2 1 3 2  2 3 Use Rational Exponents to Simplify 4 6 2 4 1 2 a  a a  a 2 12 6 6 6 2 a  2 a  2 a  4a 12 6 1 2 2 1 4 2 4 10  3  10 3  10 3 4 1 4  10 3  300 4 2 4 Use Rational Exponents to Simplify 4  x  y  x  y 3  x  y 3 4  x  y 1 2    x  y 3 1  4 2 1 4   x  y  4 x  y Write as a Single Radical Expression x  2  4 3y  1 2  x  2  3 y  1 4 2 4 1 4   x  2  3 y   1 4  x  2    3 y      2 4 4  x  2  3 y   2 4 x 3x y  12 xy  12 y 2 2   4x  4  3 y   Write as a Single Radical Expression 1 2 1  2 5 6 a b c  3 6 3  6 5 6 3 3 5 a b c  ab c 6 Write as a Single Radical Expression 2  3 1 2 5 6 4  6 3 6 5 6 x y z 4 x y z  x y z 6 3 5 Methods to Simplify Radical Expressions • Simplify by factoring • Rationalize denominators • Collecting like radical terms • Using rational exponents Now you can • Calculate radical expressions in two ways. • Write expressions with rational exponents as radical expressions and vice versa. • Simplify expressions containing negative rational exponents. • Use rational exponents to simplify radical expressions. 1.  6a  3  6a  3   6a 6a 6a  6a 6a 7.  3 2  3 4 3 d  3 3 3 12c d 3 144 c 3 3 2  3 8 18 c 3 2c 18cd 2 12c d  2 2  2 c 3 d 2  13. 19. 25.  1 2 2 5 ab   1 5 3 2 at 3   5  19  19 2 2 ab 5 3 at 1 3 31. 37. 7  3 7 2 7 2 7 3 6 3 6 x y z  x y z 3 6 2 2  3 12ab 1 2 1 2 1 2 3 6  12 a b  12 a b  12ab  1 2 40. x 1  3 1  x 43. 46.  5xy  1 x 2  3 5  6 1 3 1   x  5xy  2 3 5 6 2 3 1 2 2 1  3 2 49. 11 11 11 52. 8.3 8.3 3 4 2 5  8.3 3 2  4 5 4 3  6 6  11 15 8  20 20  8.3 7 6  11  8.3 7 20 55. 58. 3  5 7  54       3 8y 6  5 5 3  47 1 3 6 3 5 15 28 8 y  2y 2 61. 4 16x12 y16  4 4 12 4 16 x 12 16 2x 4 y 4 16 y   2x y 3 4 1 3 1 2 x x  2  x ( x  2)  3 64. 3 6 2 6 x ( x  2)  x ( x  2)  6 6 3 2 x ( x  4 x  4)  ( x  4 x  4 x ) 3 2 6 5 4 3 3 ( x  y) 2 4 ( x  y) 3 67. ( x  y) ( x  y) 2 3 3 4 ( x  y) 12   ( x  y) 8 9  12 12 ( x  y) 1 2 3  3 4   ( x  y) 1  12  7 12 5 6 1 3 1  6 s t 70. s t 3 12 s t 4 st 4 12 12  s 7 4  12 12 1 4 4 4 t  s t  5 1  6 6