* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Science 10 - SharpSchool
Water splitting wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Molecular orbital diagram wikipedia , lookup
Gaseous signaling molecules wikipedia , lookup
Hypervalent molecule wikipedia , lookup
Isotopic labeling wikipedia , lookup
Metastable inner-shell molecular state wikipedia , lookup
Periodic table wikipedia , lookup
Abundance of the chemical elements wikipedia , lookup
Electrochemistry wikipedia , lookup
Electrolysis of water wikipedia , lookup
Stoichiometry wikipedia , lookup
Coordination complex wikipedia , lookup
Chemical element wikipedia , lookup
Inorganic chemistry wikipedia , lookup
Metallic bonding wikipedia , lookup
Acid–base reaction wikipedia , lookup
Atomic nucleus wikipedia , lookup
History of chemistry wikipedia , lookup
Alkaline earth metal wikipedia , lookup
Electron configuration wikipedia , lookup
Chemical bond wikipedia , lookup
History of molecular theory wikipedia , lookup
Extended periodic table wikipedia , lookup
Organosulfur compounds wikipedia , lookup
Rutherford backscattering spectrometry wikipedia , lookup
Chemistry: A Volatile History wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Gas chromatography–mass spectrometry wikipedia , lookup
Metalloprotein wikipedia , lookup
IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup
Science 10 PreAP Energy and Matter in Chemical Change Understanding Matter A. WHMIS  workplace hazardous materials information system  all chemicals are treated with respect  WHMIS has been developed to provide guidelines for handling, storage and disposal of reactive materials compressed gas corrosive poisonous and infectious material causing immediate and serious toxic effects poisonous and infectious causing other toxic effects dangerously reactive material flammable and combustible oxidizing material biohazardous infectious material B. Properties  physical properties are properties you can see and measure eg) colour, state, density, ductility, malleability, boiling point  chemical properties are properties used to describe how substances will react with each other eg) combustion, rusting, decomposition C. Classification of Matter All Matter Mixtures Homogeneous Alloys Solutions Pure Substances Elements Compounds Colloids Metals Ionic Suspension Non-Metals Molecular Mechanical Mixture Metalloids Heterogeneous  homogeneous mixture is a mixture of 2 or more substances that has uniform properties (that appear as one) eg) salt water, kool-aid, air  an alloy is a homogeneous mixture of 2 or more metals eg) brass = copper + zinc steel = iron + chromium + carbon  heterogeneous mixture is a mixture of 2 or more substances and individual components are visible eg) cereal, chocolate chip cookies, bread  suspension is a mechanical mixture in which the components are in different states eg) mud  colloids are mechanical mixtures in which the suspended substances cannot be easily separated from the other substances eg) milk  elements are substances (metals, non-metals or metalloids) that are pure and cannot be broken apart eg) hydrogen, helium, carbon etc.  compounds are two or more elements combined; cannot be separated by physical means eg) water, carbon dioxide etc.  we will be focusing on elements and compounds in this course! D. Atomic Structure  atoms are the building blocks of ALL matter  consist of a tiny nucleus and a huge “cloud” region eg) ball bearing in middle of football field nucleus cloud region  nucleus makes up 99% of the mass of an atom  cloud region makes up most of the volume of an atom Subatomic Particles 1. Proton (p+)  positive charge  found in nucleus  determines the type of element 2. Neutron (n0)  no charge  found in nucleus  used to hold nucleus together 3. Electron (e)  smallest subatomic particle  negative charge  found in “cloud” region  arranged in energy levels  maximum # of electrons in each level (for first 20 elements only!): Level 1 = 2 e Level 2 = 8 e Level 3 = 8 e Level 4 = we will only go up to 2 e Atomic Mass  atomic mass unit (amu) is the mass of a proton or neutron = 1.7  1024 g  net charge for all atoms is zero  # e = # p+  mass number is the sum of the protons and neutrons (rounded to the nearest whole number)  used to find the number of neutrons eg) lithium atomic number = 3 atomic mass = 6.94 = 7 # protons = 3 # neutrons = 7 – 3 = 4 Isotopes  atoms that have the same number of protons but a different number of neutrons  atomic mass on the periodic table is an average mass based on the percentage abundances of all naturally occurring isotopes of the element isotope notation: A X Z X = symbol A = mass # (#p+ + n°) Z = atomic # (#p+) Examples copper - 64 64 Cu 29 # p+ = 29 # e- = 29 #n° = 64 - 29 = 35 copper - 62 62 Cu 29 # p+ = 29 # e- = 29 #n° = 62 - 29 = 33 Your Assignment: pg 1 E. Atomic Theory 1. Dalton’s Atomic Theory: 1808  all matter is composed of tiny, indivisible particles called atoms  atoms of an element have identical properties  atoms of different elements have different properties  atoms of two or more elements can combine in constant ratio to form new substances eg) H:O ratio 2:1 → H2O → water H:O ratio 2:2 → H2O2 → hydrogen peroxide 2. J.J. Thompson: 1897  credited with discovery of electrons  “raisin bun” model or “plum pudding” model  atom is a sphere which is positive, with negative electrons embedded in it like raisins in a bun  most of the mass is associated with the positive charge 3. Ernest Rutherford: 1911  atoms have a nucleus which is positive and has most of the mass  most of the atom is empty space occupied by the moving negatively charged electrons  proposed the existence of protons 4. Neils Bohr: 1913  electrons move in circular orbits around the nucleus  cannot exist between orbits 5. James Chadwick: 1932  showed that the nucleus must contain heavy neutral particles to account for all of the atom’s mass (neutrons) 6. Schrodinger/de Broglie: 1930  quantum mechanical model  electrons have distinct energy levels  exact locations of electrons are not defined, but the probable location in a region of space can be predicted F. The Periodic Table  the periodic table was developed by Dmitri Mendeleev in the mid 1800’s http://www.chemicool.com/ 1. Atomic Number  number of protons in one atom of an element  increases from left to right and top to bottom 2. Properties  3 major categories: 1. metals are good conductors, strong, malleable (pound into thin sheet), ductile (can draw into a wire, bendable), have high luster; are found on left side of stair case 2. non metals are poor conductors, non-lustrous, weak, etc…opposite properties to metals; found on right side of staircase 3. metalloids show properties of both metals and nonmetals; found above and below staircase 3. Groups  18 vertical columns are called groups or families  2 labelling systems: Roman Numerals with letters or ordinary numbers IA, IIA, IIIB, IV, V, VI, VII, VIII etc 1, 2, 3, 4, 5, 6, 7, 8        Group 1 (IA) Alkali Metals Group 2 (IIA) Alkaline Earth Metals Group 17 (VIIA) Halogens Group 18 (VIIIA) Noble (Inert) Gases Lanthanide Series (57-71) Rare Earths Groups 3-12 (B series) Transition Elements elements in each group share similar chemical properties (reactivity) although intensity changes  reactivity increases down group for metals and up group for nonmetals  group number indicates how many electrons are in the outermost energy level 4. Periods  horizontal rows  show a trend in reactivity which changes from left to right  each time you move to a new period you start the trend over G. Electron Energy Level Representations (EELR)  nucleus – shows # p+ and n0  energy levels – shows # of e in each level (# of levels = period element is in)  valence electrons are the e in outermost energy level (same as group #, ignoring the 1 in front of groups 13-18 ) Examples sodium - atomic # 11 - mass # 22.99 = 23 + # p = 11 # e- = 11 #n° = 23 - 11 = 12 1 e8 e2 e- 11 e- p+ = 11 n° = 12 argon - atomic # 18 - mass # 39.948 = 40 # p+ = 18 # e- = 18 #n° = 40 – 18 = 22 8 e8 e2 ep+ = 18 n° = 22 18 e- Draw the EELR for the following: 1. potassium 2. chlorine 3. beryllium 4. calcium potassium - atomic # 19 - mass # 39.10 = 39 # p+ = 19 # e- = 19 #n° = 39 – 19 = 20 1 e8 e8 e2 e- chlorine - atomic # 17 - mass # 35.453 = 35 # p+ = 17 # e- = 17 #n° = 35 – 17 = 18 7 e8 e2 e- 19 e- p+ = 19 n° = 20 p+ = 17 n° = 18 beryllium - atomic # 4 - mass # 9.012 = 9 # p+ = 4 # e- = 4 #n° = 9 – 4 = 5 2 e2 ep+ = 4 n° = 5 17 e- calcium - atomic # 20 - mass # 40.08 = 40 # p+ = 20 # e- = 20 #n° = 40 – 20 = 20 2 e8e8 e2 e- 4 ep+ = 20 n° = 20 20 e- H. Octet Rule  atoms tend to be stable when the outer energy level is full of electrons  the octet rule states that atoms bond in a way to have a full valence energy level (there are exceptions)  atoms will either share electrons, or gain or lose electrons in order to satisfy this octet rule  compounds are formed when two or more different elements bond together either by sharing or transferring electrons I. Ions  ions are atoms or groups of atoms that have a net charge  number of p+ and e are not equal  most atoms try to achieve the electron configuration of a noble gas  isoelectronic means having the same number of e as another atom or ion eg) fluorine gains an electron to be isoelectronic with neon eg) potassium loses an electron to be isoelectronic with argon Cations  positively charged ions  lost electrons to obtain a stable electron configuration (full valence level)  METALS form cations eg) sodium loses one e to completely empty the last energy level Na+ has 10 e and 11 p+  charge on a metal ion is the same as the group number for groups 1,2,3,13,14 (ignore the 1 in front of 13 and 14) Anions  negatively charged ions  gained electrons to obtain a stable electron configuration  NON-METALS form anions  have “ide” ending eg) oxygen gains two e to completely fill the last energy level O2 has 10 e and 8 p+ and is called the oxide ion  charge on a non-metal is 18  group number (not Roman Numerals) EELR’s for Ions number of p+ = atomic number number of e = number of p+ – charge number of n0 = atomic mass – atomic number (# of p+) Examples nitride ion - atomic # 7 - mass # 14.007 = 14 # p+ = 7 # e = 7-(-3) = 10 #n° = 14 – 7 = 7 8 e2 e- 10 e- p+ = 7 n° = 7 calcium ion - atomic # 20 - mass # 40.08 = 40 # p+ = 20 # e- = 20 – (+2) = 18 #n° = 40 – 20 = 20 8 e8 e2 ep+ = 20 n° = 20 18 e- Draw the EELR for the following: 1. sulphide ion 2. aluminium ion 3. chloride ion 4. magnesium ion sulphide ion - atomic # 16 - mass # 32.07 = 32 # p+ = 16 # e- = 16 – (2) = 18 #n° = 32 – 16 = 16 8 e8 e2 e- - atomic # 13 - mass # 26.98 = 27 # p+ = 13 # e- = 13 – (+3) = 10 #n° = 27 – 13 = 14 18 e- p+ = 16 n° = 16 chloride ion aluminium ion 8 e2 e- 10 e- p+ = 13 n° = 14 - atomic # 417 - mass # 35.45 = 35 # p+ = 17 # e- = 17 – (1) = 18 #n° = 35 – 17 = 18 8 e8 e2 e- magnesium ion - atomic # 12 - mass # 24.31 = 24 # p+ = 12 # e- = 12 – (+2) = 10 #n° = 24 – 12 = 12 18 e- p+ = 17 n° = 18 Your Assignment: pg 2 8 e2 ep+ = 12 n° = 12 10 e- J. Elements  metallic elements exist as single atoms (monatomic)  chemical formula is simply the symbol followed by the state at room temperature eg) sodium Na(s) mercury Hg() copper Cu(s)  non-metals (not including noble gases) do not exist as single atoms and are called molecular elements (diatomic, polyatomic)  chemical formula is the symbol with the subscript and the state at room temperature  memorize the subscripts (flagpole)!!! H2 N2 O2 F2 P4 S8 Cl2 Br2 I2 Summary: Monatomic C(s), noble gases, all metals Diatomic H2(g), N2(g), O2(g), F2(g), Cl2(g), Br2(g), I2(s) Polyatomic P4(s), S8(s) K. Molecular Compounds  molecular compounds are formed when two or more nonmetals bond together  bonded by covalent bonds which is the force of attraction between atoms that are sharing electrons  properties: 1. do not conduct electricity when dissolved in water 2. dissolve in water to form either a neutral molecular solution or an acidic solution 3. solids, liquids or gases at room temperature Naming  give the atom name for the first element (with the prefix if there is more than one) then give the name for the second element with “ide” ending and include the prefix  Note: if the first element is hydrogen, do not put a prefix (these are acids!) Prefixes 1 = mono 2 = di 3 = tri Try These 1. CO(g) 2. CO2(g) 3. P4O10(s) 4. BrH7(s) 4 = tetra 5 = penta 6 = hexa 7 = hepta 8 = octa 9 = nona 10 = deca carbon monoxide carbon dioxide tetraphosphorus decaoxide bromine heptahydride Writing Formulas  simply write each symbol followed by the subscript (from prefix) Try These 1. oxygen dibromide 2. diphosphorus pentasulphide 3. carbon tetraiodide 4. phosphorus pentachloride OBr2 P2S5 CI4 PCl5  some molecular compounds have classical names…memorize them!!! O3 = ozone NH3 = ammonia H2O = water H2O2 = hydrogen peroxide CH4 = methane CH3OH = methanol C2H6 = ethane C2H5OH = ethanol C6H12O6 = glucose C12H22O11 = sucrose H2S = hydrogen sulphide HCl, HF, HBr, HI = hydrogen halides (usually acids) Your Assignment: pg 3 L. Ionic Compounds  ionic compounds are formed when electrons are transferred, allowing oppositely charged ions to bond together  ionic bond is the force of attraction between oppositely charged ions  properties: 1. conduct electricity when dissolved in water 2. separate into ions when dissolved in water 3. crystalline solids at room temperature 1. Monovalent Ionic Compounds  monovalent means there is one charge on the metal eg) Na+, Ca2+  metal + nonmetal Naming  give the name for each ion…metals are normal, non-metals have “ide” ending *** never use capital letters in naming!! eg) NaF sodium fluoride Na2S sodium sulphide the 2 means that two sodium ions are bonded with one sulphide ion… this doesn’t matter for naming Try These: Name the following: 1. LiF lithium fluoride 2. KCl potassium chloride 3. BeS beryllium sulphide 4. Rb3P rubidium phosphide 5. MgF2 magnesium fluoride 6. Na2O sodium oxide 7. CsBr cesium bromide 8. BaCl2 barium chloride Writing Formulas  look up the symbol for each ion and write them listing the metal ion first  balance the charges using subscript numbers ***in ionic compounds, the total positive charges must equal the total negative charges…the net charge is zero eg) sodium oxide Na2O 1+ 1+  2 = 2+ 2 2  1 = 2 calcium phosphide 2+ 2+  3 = 6+ Ca3P2 3 3  2 = 6 Try these: 1. magnesium chloride 2. calcium chloride 3. zinc sulphide 4. silver sulphide 5. germanium oxide 6. calcium arsenide 7. magnesium nitride MgCl2 CaCl2 ZnS Ag2S GeO2 Ca3As2 Mg3N2 2. Multivalent Ionic Compounds  metal ions that have more than one possible charge eg) Cu2+, Cu+, Fe3+, Fe2+  transition metal + nonmetal  the first charge listed is the most common Naming  same rules as before  the difference…you must include brackets containing the charge of the metal ion in Roman Numerals (I,II,III,IV,V,VI,VII)  figure out the charge on the metal by using how many negative charges there are in the nonmetal ions eg) CuI copper (I) iodide TiBr4 titanium (IV) bromide Ti3P4 titanium (IV) phosphide Try These: 1. AuBr 2. CrCl2 3. Co2O3 4. VS2 5. PuN2 gold (I) bromide chromium (II) chloride cobalt (III) oxide vanadium (IV) sulphide plutonium (VI) nitride Writing Formulas  same rules  the charge on the metal is given to you in the brackets eg) iron (II) oxide FeO tin (II) chloride SnCl2 chromium (III) sulphide Cr2S3 Try these: 1. chromium (II) sulphide 2. nickel (III) chloride 3. vanadium (IV) phosphide 4. gold (III) iodide CrS NiCl3 V3P4 AuI3 Your Assignment: pg 4 3. Mixed Ionic Compounds  metal ion + polyatomic ion (complex ion) eg) PO43, SO42, HCO3 etc. ***NH4+ (ammonium ion) is the only positive complex ion…you’ll see it in the place of a metal Naming  give the name for the first ion then give the name for the complex ion Try These: 1. KIO3 2. NaCH3COO 3. MgSO3 4. NH4NO3 5. Ca3(PO4)2 potassium iodate sodium acetate magnesium sulphite ammonium nitrate calcium phosphate Writing Formulas  same as before…look up the symbol for each ion then balance the charges using subscripts  if you must multiply one of the complex ions, put brackets around it first then write the subscript Try These: 1. aluminum phosphate 2. aluminum chlorate 3. calcium sulphite 4. scandium acetate 5. ammonium sulphate AlPO4 Al(ClO3)3 CaSO3 Sc(CH3COO)3 (NH4)2SO4 Your Assignment: pg 5 4. Hydrated Ionic Compounds  ionic compounds containing water in their structure  water is represented by “xH2O” in the formula where x is the number of water molecules Naming  give the name for the first part of the compound using our previous rules  name the “xH2O” part as prefix + “hydrate” (same prefixes as molecular compounds) Try These: 1. NaF3H2O 2. FeSO46H2O 3. GaNH2O sodium fluoride trihydrate iron (II) sulphate hexahydrate gallium nitride monohydrate Writing Formulas  same as before…look up the symbol for each ion then balance the charges using subscripts  for the hydrate part…add “xH2O” where x is the number given in the prefix Try These: 1. iron (III) nitrate nonahydrate 2. sodium chlorate tetrahydrate 3. nickel (II) sulphite heptahydrate Fe(NO3)39H2O NaClO34H2O NiSO37H2O Your Assignment: pg 6 Summary: Ionic vs. Molecular Ionic  metal + non-metal (or polyatomic ions)  no prefixes (except hydrates)  solids  solutions conduct  solutions are basic or neutral Molecular  all non-metals     prefixes solids, liquids or gases solutions do not conduct solutions are acidic or neutral 5. Acids and Bases  matter can be subdivided into three groups based on its properties: 1. acids 2. bases 3. neutral substances  let’s look at the properties of acids and bases: Acids  usually soluble in H2O  conduct electricity  neutralize bases  taste sour  react with metals to produce H2(g) Indicators  litmus – pink  bromothymol blue – yellow  phenolphthalein – colourless Indicators  litmus – blue  bromothymol blue – blue  phenolphthalein – bright pink eg) vinegar, lemon juice eg) ammonia, Tums      Bases usually soluble in H2O conduct electricity neutralize acids taste bitter feel slippery  the pH scale was devised to indicate how acidic or basic a substance is stomach acid strong acids 0 coffee 1 5 antacid 7 acids 11 bases Neutral Naming and Writing Formulas for Bases  use rules for ionic compounds  many of them contain the hydroxide ion (OH) eg) NaOH sodium hydroxide KOH potassium hydroxide Ba(OH)2 barium hydroxide NaHCO3 sodium hydrogen carbonate calcium hydroxide Ca(OH)2 calcium carbonate CaCO3 Naming Acids  acids always contain hydrogen (usually as the first element)  acids are always aqueous (dissolved in water) (aq) eg) HCl(aq), H2SO4(aq), HNO3(s) not an acid Rules hydrogen ________ide becomes hydro_______ic acid hydrogen ________ate becomes _______ic acid hydrogen ________ite becomes _______ous acid Try These: Write the acid name for the following: 1. HF(aq)  hydrogen fluoride  hydrofluoric acid 2. H2SO3(aq)  hydrogen sulphite  sulphurous acid 3. H3BO3(aq)  hydrogen borate  boric acid 4. HCl(g)  hydrogen chloride  not an acid!!!!!!!! KOH 14 strong bases Writing Formulas  use the naming acids rules in the opposite direction  come up with the “ionic” name then write the formula, balance the charges and add “(aq)” to the end Try These: Write the ionic name and formula for the following: 1. hydrosulphuric acid hydrogen sulphide 2. carbonic acid hydrogen carbonate 3. chlorous acid hydrogen chlorite H2S(aq) H2CO3(aq) HClO2(aq) ***Note the special cases of sulphur and phosphorus…they add “ur” and “or” respectively to the name Your Assignment: pgs 7-8 M. States and Solubility  acids – always (aq)  elements – can be (s), (l) or (g)…look up state on periodic table  molecular compounds – can be (s), (l), or (g)…the question usually tells you (or use common sense!)  ionic compounds – either (s) or (aq)…look up on the solubility chart Examples 1. LiCl (aq) 2. AgCl(s) 3. NaNO3(aq) 4. Ba(OH)2(aq) 5. BaSO4(s) 6. K2S(aq ) Your Assignment: pg 9 N. Chemical Reactions  chemical reactions can cause both physical and chemical changes and always involve the formation of a new substance Evidence 1. temperature change 2. colour change 3. solid (precipitate) produced 4. gas produced Reactants Products balancing 1 Zn(s) + 2 HCl(aq)  1 ZnCl2(aq) + 1 H2(g) states states  energy changes that occur with chemical reactions can be: 1. endothermic = energy is absorbed (enters) eg) cooking food reactants + energy  products 2. exothermic = energy is released (exits) eg) combustion reactants  products + energy O. Law of Conservation of Matter  Law of Conservation of Matter states that matter cannot be created or destroyed, it only changes forms  mass of reactants = mass of products Counting Practice! How many of each element are in the following compounds? 1. NaCl 4. Ba(OH)2 7. 2 CaCl2 2. BaBr2 5. NH4CH3COO 8. 8 PbI2 3. (NH4)3P 6. 3 (NH4)2S 9. 4 Zn(CH3COO)2  when chemicals react they follow the Law of Conservation of Matter  there must be equal numbers of each element on both sides of the reaction  coefficients are used to increase the number of atoms in a compound (balancing) Examples 1. 2 Mg(s) + 1 O2(g)  2 MgO(s)  Mg O 1x2=2 2 Mg O 1 2 1x2=2  2 H2O(l)  2 H2(g) + 1 O2(g) 2.  3. Cu 1 Ag 1 2 NO3 1 x 2 = 2 Cl Na Br 2 1 2 1x2=2 2 2x2=2  Cu 1 Ag 1 x 2 = 2  NO3 2 Cl Na Br 1 2 1x2=2  2 2 KI(aq) + 1 Pb(NO3)2(aq)  1 PbI2(s) + 2 KNO3(aq)  K I NO3 Pb 6. H O 1 Cl2(g) + 2 NaBr(aq)  1 Br2(l) + 2 NaCl(aq)  5. 2x2=2 1 2 1 Cu(s) + 2 AgNO3(aq)  2 Ag(s) + 1 Cu(NO3)2(g)  4. H O 1x2=2 1 2 2 1 K I NO3 Pb 1 2 2 2x2=2  1 1 CH4(g) + 2 O2(g)  1 CO2(g) + 2 H2O(g)  C H O 1 4 2x2=4 C H O Your Assignment: pg 10 1 2x2=4  2+1=3 2+2=4 P. Identifying Chemical Reactions 1. Hydrocarbon Combustion  a compound containing hydrogen and carbon (a hydrocarbon) burns/combusts in the presence of O2(g)  always forms CO2(g) and H2O(g) C?H? + O2(g)  CO2(g) + H2O(g) eg) 1 CH4(g) + 2 O2(g)  1 CO2(g) + 2 H2O(g) 2. Composition, Combination or Formation  will always have more reactants than products  are usually exothermic i. Combination of Elements  elements combine to form a compound element + element  compound eg) 2 Mg(s) + 1 O2(g)  2 MgO(s) ii. Combination to Produce an Acid (AP)  combination of a non-metal oxide (acidic oxide) with water non-metal oxide + water  acid eg) 1 CO2(s) + 1 H2O()  1 H2CO3(aq) iii. Combination to Produce a Base (AP)  combination of a metal oxide (basic oxide) with water metal oxide + water  base eg) 1 Li2O(s) + 1 H2O()  2 LiOH(aq) iv. Combination to Produce a Salt (AP)  combination of a metal oxide (basic oxide) with a non-metal oxide (acidic oxide) metal oxide + non-metal oxide  a salt eg) 1 MgO(s) + 1 CO2(g)  1 MgCO3(s) 3. Decomposition  will always have more products than reactants  are usually endothermic i. Decomposition to Produce Elements  compound decomposes into its elements compound  element + element eg) 2 H2O(l)  2 H2(g) + 1 O2(g) ii. Decomposition of Acids (AP)  acid decomposes into non-metal oxide (acidic oxide) and water acid  non-metal oxide + water eg) 1 H2SO4(aq)  1 SO3(g) + 1 H2O(l) iii. Decomposition of Bases (AP)  base decomposes into metal oxide (basic oxide) and water base  metal oxide + water eg) 1 Ca(OH)2(s)  1 CaO(s) + 1 H2O(l) iv. Decomposition of Salts (AP)  a salt decomposes into non-metal oxide (acidic oxide) and metal oxide (basic oxide) a salt  non-metal oxide + metal oxide eg) 1 Fe2(SO4)3(s)  3 SO3(g) + 1 Fe2O3(s) 4. Single Replacement (Displacement)  an element reacts with an ionic compound to form a different element and a different ionic compound element + compound  element + compound eg) Cu(s) + 2 AgNO3(aq)  2 Ag(s) + Cu(NO3)2(g) Cl2(g) + 2 NaBr(aq)  Br2(l) + 2 NaCl(aq) 5. Double Replacement  two ionic compounds react to form two different ionic compounds compound + compound  compound + compound i. Precipitation Reactions  one of the products formed is insoluble compound + compound  insoluble compound + compound eg) KI(aq) + Pb(NO3)2(aq)  PbI2(s) + KNO3(aq) ii. Gas Formation (AP)  sometimes one of the products in a double replacement undergoes spontaneous decomposition, forming a gas  you must write down the products of this decomposition  memorize these! H2CO3(aq)  H2O() + CO2(g) NH4OH(aq)  H2O() + NH3(g) H2SO3(aq)  H2O() + SO2(g) eg) CaCO3(s) + HNO3(aq)  Ca(NO3)2(aq) + H2O() + CO2(g) iii. Neutralization Reactions  an acid reacts with a base to produce water and a salt acid + base  water + a salt eg) 1 HCl(aq) + 1 NaOH(aq)  1 H2O(l) + 1 NaCl(aq) 1 ZnO(s) + 2 HNO3(aq)  1 H2O(l) + 1 Zn(NO3)2(aq) 2 LiOH(aq) + 1 CO2(g)  1 H2O(l) + 1 Li2CO3(aq) Your Assignment: pgs 11-13 Q.      Significant Digits any digit from 1 – 9 is significant trailing zeros are significant eg) 6.3800, 12 000 “sandwich” zeros are significant eg) 2.04, 1005.002 leading zeros are not significant eg) 0.0032 counted objects and constants are not included in sig digs  / : multiply of divide then round answer to the lowest number of sig digs  +/ : add or subtract then round answer to the lowest number of decimal places Your Assignment: pg 14 R. The Mole  the mass of a single atom is so small that we cannot easily measure it  the mole, n, is a measurement that is used so that we can actually measure the mass of elements and compounds…IT IS JUST A NUMBER!!! 1. Avogadro’s Number  1 mole = Avogadro’s number (NA) = 6.02 x 1023 atoms, molecules etc. that’s 602 000 000 000 000 000 000 000 atoms, molecules etc!  you can use Avogadro’s number to calculate the number of moles in a substance if you know the number of molecules n = # atoms NA Example A diamond contains 5.0 x 1025 atoms of carbon. How many moles of carbon are in this diamond? n = 5.0  1025 atoms 6.02  1023 atoms/mol = 83.056….mol = 83 mol Your Assignment: pg 15 #1-3 2. Atomic Molar Mass  12C, carbon 12, has been assigned by chemists (1961) as the standard for measuring atomic masses  12C is assigned a mass of exactly 12 atomic mass units (amu)  comparing masses of atoms involves the use of a mass spectrometer  an electron beam and magnetic field are used to deflect ions…amount of deflection indicates the mass (higher mass = lower deflection)  once you know the mass of each isotope, they can then be averaged (weighted) to come up with the average atomic mass for the element  the atomic masses given on the periodic table are an average of all the naturally occurring isotopes of each element Example 1 It is known that natural carbon is composed of 98.89% 12C at 12 amu and 1.11% 13C at 13.003355 amu. The amount of 14C is so small it is not used in these calculations. Calculate the average atomic mass of natural carbon. atomic mass = 98.89% of 12 amu + 1.11% of 13.003355 amu = (0.9889)(12 amu) + (0.0111)(13. 003355 amu) = 12.01113724 amu = 12.0 amu Example 2 When a sample of natural copper is vaporized and injected into a mass spectrometer, the sample is found to be 69.09% 63Cu with a mass of 62.93 amu and 30.91% 65Cu with a mass of 64.93 amu. Calculate the average atomic mass of copper. atomic mass = 69.09% of 62.93 amu + 30.91% of 64.93 amu = (0.6909)(62.93 amu) + (0.3091)(64.93 amu) = 63.5482 amu = 63.55 amu Your Assignment: pg 15 #4-5  molar mass is the average atomic mass of one mole of a substance  measured in g/mol  the average atomic molar masses are given on the periodic table Examples: Calculate the molar mass of the following substances: 1. Na(s) 1 x 22.99 g/mol = 22.99 g/mol 2. O2(g) 2 x 16.00 g/mol = 32.00 g/mol 3. Al2O3(s) 2 x 26.98 g/mol = 53.96 g/mol 3 x 16.00 g/mol = 48.00 g/mol 101.96 g/mol 4. Ca(OH)2(s) 1 x 40.08 g/mol = 40.08 g/mol 2 x 16.00 g/mol = 32.00 g/mol 2 x 1.0079 g/mol = 2.0158 g/mol 74.10 g/mol 3. Mole Calculations  now we can use number of moles and molar mass in a formula: n=m M where: m = nM n = number of moles in mol m = mass in g M = molar mass in g/mol Example 1: How many moles are in 200 g of table salt (NaCl)? m = 200 g n=m M = 1 x 22.99 g/mol = 22.99 g/mol M 1 x 35.453 g/mol = 35.453 g/mol = 200 g 58.443 g/mol 58.443 g/mol = 3.42 mol Example 2: How many grams are in 62.9 mol of lead (II) nitrate? Pb(NO3)2 n = 62.9 mol m = nM M = 1 x 207.19 g/mol = 207.2 g/mol = (62.9 mol)(331.2 g/mol) 2 x 14.01 g/mol = 28.02 g/mol = 2.08  104 g 6 x 16.00 g/mol = 96.00 g/mol 331.2 g/mol Your Assignment: pg 15-17 #4-14 S. Gravimetric Stoichiometry  gravimetric = mass measurements  when you balance a reaction, you are balancing the moles of each reactant and product…this gives you the mole ratio eg) 2 Mg(s) + 1 O2(g)  2 MgO(s) mole ratio is 2:1:2  certain assumptions must be made: 1. the reaction is spontaneous 2. the reaction is fast 3. the reaction goes to completion 4. the reaction is stoichiometric ie) whole number ratio of moles of reactants and products Steps 1. 2. 3. 4. Write a balanced equation including the states. Write the information given. Find the moles of the given species using n=m/M. Find the moles of the wanted species using mole ratio (wanted/given). Calculate mass of the wanted species using m=nM. Example 1 Calculate the moles of aluminum formed when 2.50 moles of aluminum oxide decomposes into aluminum and oxygen. 2 Al2O3(s)  3 O2(g) + 4 Al(s) x mol n = 2.50 mol n = 2.50 mol  4 2 = 5.00 mol iron (III) ion atomic # 26 mass # 55.85 Your Assignment: pg 18 Example 2 Calculate the mass of sulfur needed to react with 0.500 moles of zinc. 8 Zn(s) + 1 S8(s)  8 ZnS(s) xg n = 0.500 mol n = 0.500 mol  1 8 = 0.0625 mol M = 256.56 g/mol m = nM = (0.0625 mol)(256.56 g/mol) = 16.035 g = 16.0 g Your Assignment: pg 19 Example 3 Iron is produced by the reaction of iron(III) oxide with carbon monoxide to produce iron and carbon dioxide. What mass of iron(III) oxide is required to produce 1000 g of iron? Fe2O3(s) + 3CO(g)  2Fe(s) + 3CO2(g) xg M = 159.70 g/mol m = 1000 g n = 17.90… x 1/2 M = 55.85 g/mol = 8.95… mol n = m/M m = nM = 1000 g/55.85g/mol = (8.95… mol)(159.70 g/mol) = 17.90… mol = 1429.72… g = 1430 g Your Assignment: pgs 20-21 Chemistry Review: pgs 22-24
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            