Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
AP Calculus: ® Fundamental Theorem of Calculus 2008 Curriculum Module F ( x) b a x a f (x) dx f (t ) dt F(b) F(a) f. 1 x 4 2 x 5 a a b a f (x) dx a F1 ( x) 1 3( 1 0) 3(0 0) b f (x) dx, c f (x) dx F1 (x) 2 3( 2 0) a f (x) dx a b b 0, c b f (x) dx c a f (x) dx 3 3(1 0) 3(2 0) 3(3 0) 3( x 0) 3(2 1) 3(3 1) 3( x 1) F2 (x) 3 F2 ( x ) 2 3( 2 1) 1 3( 1 1) F1 ( x) F2 ( x) F1 ( x) F2 ( x) 3(0 1) 3(1 1) G1 (x) x G1 ( x) 2 4( 2 0) 2 x 1 2( 1 0) 2 2 0(0 0) 2 2(1 0) 2 1 G 2 ( x) G2 (x) 2x G1 ( x) G 2 ( x) G1 ( x) G 2 ( x) 2x 4(2 0) 2 6(3 0) 2 2 x( x 0) 2 u H (u) 2 1 1 3 6 3 6( 3 0) 2 1 2( 1 0) 2 0 (u, H (u)) 1 2(1 0) 2 6(3 0) 12(6 0) 2 2 2u (u 0) 2 f (t ) 3 2 [ 2,3] 1 F1 ( x) ( x, F1 ( x)) F1 ( x) F1 ( x) F1 (x)? f (t ) 3 2 F2 ( x ) [ 2,3] 1 ( x, F2 ( x)) F2 ( x) F2 ( x) F2 ( x) ? F1 ( x) g (t ) 2t 2 F2 ( x) [ 2,3] 1 G1 ( x) ( x, G1 ( x)) G1 ( x) G1 ( x) G1 ( x) ? F1 ( x) x 2 1 G 2 ( x) ( x, G2 ( x)) G 2 ( x) G 2 ( x) G2 ( x) ? G1 ( x) f (t) 2t G 2 ( x) G1 ( x) x 2 u 6 1 1 3 1 3 1 H (u) (u, H (u)) H (u) H (u) H (u) H (x) H (x) F(x) F (x) 2 2x F (x) 3 F (x) 3 F ( x) 2 x F ( x) 2 x F ( x) 2 2x F ( x) 2 2x F ( x) sin x F ( x) sin x F ( x) 2(sin x) cos x x 1 2 2t dt 2t t 2 x 2x 1 x2 1 F (x) F(x) F(x) F ( x) F(x) F(x) x 3dt F(x) 2t dt F(x) (2 2t )dt F ( x) 0 x 0 x 0 x 0 sin t dt 3x 0 2t dt F(x) F(x) x 1 x 2t dt 1 x 1 (2 2t )dt x 1 3dt sin t dt sin x 0 2t dt G(x) F(x) C x a a a b a b a f (t) dt F(x) C f (t) dt F(a) C f (t) dt F(b) C f (t) dt F(b) h(t ) 5 0 h(t) dt v(t ) 10 3 v(t) dt b(t ) 6 2 b(t) dt 0, F(a) C F(b) F (a) F(a) b a f (t) dt v(t ) x(t ) t 2 t 10 t t 0) 2 t 10 x2 d dx 0 sin t 3 dt cos(x 6 ) r (t ) 0 t 3.514 1.572 t3 4t 2 6 8 8 r (t )dt 0 2.667 r (t )dt 0 3.514 r (t )dt 1.572 t ln(1 2 t ) a (t ) 2.667 0 r (t )dt 0 t 1 t 0.462 r (t )dt 2 1.609 2.555 g(x) x 0 2.886 sin t 2 dt 1 x 3 1 x 0 0 x 1.772 1.253 x 2.171 1.772 x 2.507 2.802 x 3 dy dx y 3x 2 3x 2 y 2 4x 5 1, find y 3 . 4x 5 dx y 3 y 3x 2 y x 3 2x 2 4x 5 dx 5x C 1 8 8 10 C 7 C x 3 2x 2 y y 3 27 18 15 7 b a 3 2 y dx y 3 y 3 y 3 5x 7 1 f x dx y 3 y 2 3 2 23 3x 2 f b y 2 3 2 y dx 4x 5 dx 1 (x3 2x 2 5x) 3 2 f a y 3 1 27 18 15 y 3 y 3 f x sin x 2 and f 2 8 8 10 23 23 5. Find f 1 . 2 1 f x dx f 1 f 2 f 1 5 f 1 f 2 2 1 2 1 f 1 f x dx sin x 2 dx 5.495 f f f 0 f 0 f 2 5 f 6 f 2 2 0 2 f x dx 5 1 2 4 2 9 f f 2 f 2 f 6 f 2 2 2 6 2 f x dx 5 1 4 4 2 13 f x dx 5 1 4 4 2 1 2 22 13 2 f Area = 4 Area = 2 f 3 f 0 3 f 3 0 f 0 5 f 7 f 9 Area = 9 f x dx 5 4 1 f f 7 f 3 f 9 f 3 7 3 9 3 f x dx 5 9 4 f x dx 5 9 2 2 0,1 , 3, 5 , 7, 0 1.5 x 5 4 , and 9, 2 f x 1.5 f 5 x 8 8 x 9 f f r t 95 5 0 6e 0.1t dt 71.392 C 6e 0.1t C y 1 2 and y 1 x2 f x 6. Find y 3 . cos 2x and f 0 3. Find f dW dt f x cos x3 and f 0 f x e x2 and f 5 4 . 1 dW 600 20t t 2 , where 75 dt 2. Find f 1 . 1. Find f 2 . x t v t 5sin t 2 . F t 2t t v t t 1 t2 0 s 0 5. f f x 1 ex x2 f 3.1 x2 1 x5 f 1 5 f 4 In Problems 11–13, use the Fundamental Theorem of Calculus and the given graph. Each tick mark on the axes below represents one unit. f 4 1 f x dx 6.2 and f 1 3. Find f 4 . f f 4 given that f 4 7. f f 2 f 1 f 4 f 8 5 32 3 7 2 7 8