Download Complex Number 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EXPANSION FOR COS AND SINE
LOCI IN COMPLEX NUMBER
Expansion of Sin and Cosine
Expand this!
2  3 j
4
Expansion of Sin and Cosine
Theorem 6: (Binomial Theorem)
If n  N then
 a  b   a n  n C1a n 1b  n C2 a n  2b 2  ...  n Cr a n r b r  ...  n Cnb n
n
Expansion of Sin and Cosine
Example 1.20
Expand using binomial theorem, then write in standard form of
complex number:
a)
b)
 2  3 j 3
 cos   j sin  4
Answer:
a )  46  9 j
b)
 cos
4
 
  6 cos 2  sin 2   sin 4   j 4 cos3  sin   4 cos  sin 3 

Expansion of Sin and Cosine
Example 1.19:
State cos 5  in terms of cosines.
De
Moivre’s
Theorem
?
Expansion of Sin and Cosine
Theorem 5:
If z  cos   j sin 
a)
zn 
b)
zn 
1
n
z
1
z
n
, then:
 2 cos n
 2 j sin n
Theorem 6: (Binomial Theorem)
If n  N, then:
a  b n  a n  n C1a n1b  n C2 a n2b 2  ...  n Cr a nr b r  ...  n Cnb n
Expansion of Sin and Cosine
Example 1.19:
State cos 5  in terms of cosines.
Solution:
By applying Theorem 5 and Binomial Theorem
5
1
5

z


2
cos



 
z

1
Theorem 5
Expansion of Sin and Cosine
Expand LHS using Binomial Theorem:
5
1
1

5 5
4 1 
5
3 1 
 z    z  C1 z    C2 z  
z

z
z
3
4
2
5
1
5
2 1 
5
1 1 
5
 C3 z    C 4 z    C5  
z
z
z
1
1 1
5
3
 z  5 z  10 z  10  5 3  5
z
z
z
1
 5 1  3 1

  z  5   5 z  3   10 z  
z  
z 
z


 2 cos 5  52 cos 3   102 cos  
 2 cos 5  10 cos 3  20 cos   2 
Expansion of Sin and Cosine
Expand RHS:
2 cos  
5
 32 cos 5    3
Equate (2) and (3):
32 cos 5   2 cos 5  10 cos 3  20 cos 
1
5
5
5
cos   cos 5  cos 3  cos 
16
16
8
Expansion of Sin and Cosine
Example 1.21:
By using De Moivre’s theorem and Binomial theorem, prove
that:
sin 4  4 cos 3  sin   4 cos  sin 3 
Expansion of Sin and Cosine
Solution:
By applying DMT:
 cos  j sin  4  cos 4  j sin 4 1
Expand LHS using Binomial theorem:
 cos  j sin  4   cos 4   6 cos 2  sin 4   sin 4  

 j 4 cos3  sin   4 cos  sin 3 

 2
Expansion of Sin and Cosine
Equate (1) and (2), then compare:

cos 4  j sin 4  cos 4   6 cos 2  sin 4   sin 4 

 j 4 cos3  sin   4 cos  sin 3 


Real part: cos 4  cos 4   6 cos 2  sin 4   sin 4 
3
3
Imaginary part: sin 4  4 cos  sin   4 cos  sin 
Expansion of Sin and Cosine
Example 1.22:
Using appropriate theorems, state the following in terms of sine
and cosine of multiple angles :
a 
b 
cos 3
sin 5 
Answer:
a 
cos 3  cos 3   3 cos  sin 2 
b 
1
5
5
sin   sin 5  sin 3  sin 
16
16
8
5
Loci in the Complex Number
Since any complex number, z = x+iy correspond to point (x,y) in
complex plane, there are many kinds of regions and geometric
figures in this plane can be represented by complex equations or
inequations.
Definition 1.9
 A locus in a complex plane is the set of points that have
specified property.
 A locus in a complex plane could be a straight line, circle,
ellipse and etc.
Loci in the Complex Number
i) | z − a |= b

Loci in the Complex Number
Example 1.22:
Equation of circle with center at the origin and radius, r
z  z0  r
x
x2  y2  r 2
P on circumference:
z  z0  r
r
P outside circle:
y
O0,0 
P  x, y 
z  z0  r
P inside circle:
z  z0  r
Loci in the Complex Number
Example 1.23:
What is the equation of circle in complex plane with radius 2
and center at 1+j
Solution:
z  1  j   2
Distance from
center to any
point P must be
the same
x
 x  12   y  12  4
r
z 0 1,1
y
P  x, y 
Loci in the Complex Number

Loci in the Complex Number
Example 1.23:
Find the equation of locus if:
z j  z2
Loci in the Complex Number
Solution:
 x  yj   j
x  j  y  1
  x  yj   2
  x  2   jy
x 2   y  1 
2
 x  2 2  y 2
x 2   y  1   x  2   y 2
2
2
x2  y 2  2 y  1  x2  y 2  4x  4
y  2 x 
3
2
* Locus eq : A straight line eq with m = -2
Loci in the Complex Number
x
y  2 x 
3
4
 3
 0, 
 2
0,1
3 
 ,0 
4 
2,0
P  x, y 
Distance from
point (0,-1) and
(2,0) to any point
P must be the
same
y
Loci in the Complex Number
Example 1.24:
Find the equation of locus if:
i)
z2j
1
z 1
ii )
z 3 2 j  5
Loci in the Complex Number
i)
z2j
z2j
1
1
z 1
z 1
z  2 j  z  1  x  yj  2 j  x  yj  1
x   y  2  j   x  1  yj
 x 2   y  2 2   x  12  y 2

 x    y  2
2
2
 
2
 x  1  y 2
2

2
 x 2   y  2 2   x  12  y 2
x2  y 2  4 y  4  x2  2 x  1  y 2
x2  y 2  4 y  4  x2  2 x  1  y 2  0
4 y  2 x  3  0
y
1
3
x .
2
4
Loci in the Complex Number
ii )
z 3 2 j  5
x  yj  3  2 j  5
x  3   y  2 j  5
 x  32   y  2 2  5
 x  3  2   y  2  2  52
* Locus eq : A circle of radius 5 and centre (3,-2) and.
Loci in the Complex Number

Loci in the Complex Number
Interpret the following loci complex plane.
(i) Arg z 

4
(ii) Arg ( z  1) 

4
(i) Arg z 

represents a half ray as shown in the following diagram
4
Note that the point z = 0 is not included as arg z is not
defined for z = 0.
(i) Arg (z  1) 

4
Related documents