Download study guide for final examination

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
STUDY GUIDE FOR FINAL EXAMINATION
MATH 1113
1.
Let 𝑓(π‘₯) = π‘₯ 2 βˆ’ 2π‘₯. Compute the following.
(a) 𝑓(3)
(b) 𝑓(0)
(c) 𝑓(π‘Ž)
(d) 𝑓(π‘Ž + 2)
𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)
(e) 𝑓(π‘₯ + β„Ž)
(f)
, β„Žβ‰ 0
β„Ž
2.
Find the domain of the following functions.
(a) 𝑓(π‘₯)π‘₯ 2 βˆ’ 2π‘₯
(b) 𝑓(π‘₯) =
1
π‘₯+3
1
(c) 𝑓(π‘₯) = √π‘₯ + 3
(d) 𝑓(π‘₯) =
(e)
(g)
(i)
(k)
(f) 𝑓(π‘₯) = ln π‘₯
(h) 𝑓(π‘₯) = tan π‘₯
(j) 𝑓(π‘₯) = sinβˆ’1 π‘₯
π‘₯
𝑓(π‘₯) = 𝑒
𝑓(π‘₯) = sin π‘₯
𝑓(π‘₯) = csc π‘₯
𝑓(π‘₯) = tanβˆ’1 π‘₯
√π‘₯+3
3.
Find a simplify (𝑓 ∘ 𝑔)(π‘₯).
3
2
(a) 𝑓(π‘₯) =
; 𝑔(π‘₯) =
π‘₯+2
3π‘₯
(b) 𝑓(π‘₯) = 4π‘₯ 2 + 2π‘₯ + 8; 𝑔(π‘₯) = 2π‘₯ βˆ’ 3
4.
Find the inverse of the following functions.
1
(a) 𝑓(π‘₯) = 3
(b) 𝑓(π‘₯) = π‘₯ 3 + 3
√3+π‘₯
5.
Sketch the graph of the inverse of the following function.
6.
2
Put the following equations of conic sections in standard graphing form by
completing the square. Then graph the conic sections. Give the following
information for each conic section.
Parabola: vertex, axis of symmetry, focus, and directrix.
Ellipse: center, vertices, covertices, major axis, minor axis, foci, and
eccentricity.
Hyperbola: center, vertices, transverse axis, conjugate axis, foci, and
eccentricity.
2
(a) 4π‘₯ + 𝑦 2 βˆ’ 16π‘₯ + 2𝑦 + 13 = 0
(b) π‘₯ = 2𝑦 2 + 2𝑦 + 3
(c) 9π‘₯ 2 βˆ’ 4𝑦 2 + 36π‘₯ + 8𝑦 βˆ’ 4 = 0
7.
Find the equation, in standard form, of the parabola with vertex (7, βˆ’9) and
focus (5, βˆ’9).
8.
Find all the asymptotes of the graph of 𝑓(π‘₯) =
9.
Consider the function 𝑓(π‘₯) =
. The graph of f will have a vertical
π‘₯ 2 βˆ’4
asymptote at _______ and will have a missing point at x = __________.
5π‘₯βˆ’2
4π‘₯ 2 βˆ’7π‘₯
.
3π‘₯ 2 βˆ’5π‘₯βˆ’2
10. Find the oblique asymptote of the graph of 𝑓(π‘₯) =
π‘₯ 2 βˆ’17π‘₯+72
π‘₯+3
.
11. Suppose a radioactive substance Barnesvillium has a half-life of 77 years. If 258
grams are present initially, how much will be left after 212 years?
12. What is the half-life of a radioactive element that decays to 33% of the original
amount present in 77 years?
13. Find the balance when$19,000 is invested at an annual rate of 6% for 5 years if
the interest is compounded
(a) daily
(b) continuously.
3
14. How long will it take money to double at 17% interest compounded monthly?
15. (a) The angle of depression from a tower to a landmark is 19° and the
landmark is 400 feet below the tower. How far away is the landmark?
(b) Suppose the angle of elevation of the sun is 23.4°. Find the length of the
shadow cast by Cindy Newman who is 5.75 feet tall.
4
πœ‹
5
2
16. If cos πœƒ = βˆ’ and
≀ πœƒ < πœ‹, find sec ΞΈ and cot ΞΈ.
17. Find where the graphs of the following functions have vertical asymptotes or
horizontal asymptotes or state there are no asymptotes.
(a) 𝑦 = sin π‘₯
(b) 𝑦 = tan π‘₯
(c) 𝑦 = csc π‘₯
(d) 𝑦 = cos βˆ’1 π‘₯
(e) 𝑦 = tanβˆ’1 π‘₯
18. Find the exact value of the following.
(a) sinβˆ’1 (βˆ’
√3
)
2
(c) tanβˆ’1 1
(b) cos βˆ’1 (βˆ’
√2
)
2
5πœ‹
(d) sinβˆ’1 (sin
1
(e) tan (tanβˆ’1 )
πœ‹
4
)
πœ‹
(f) cos βˆ’1 [cos (βˆ’ )]
3
19. Solve the following trigonometric equations.
(a) 2 sin π‘₯ + 1 = 0
(b) 2 cos 2 π‘₯ + sin π‘₯ βˆ’ 1 = 0
1
(c) cos 3π‘₯ = βˆ’
(d) tan2 π‘₯ βˆ’ tan π‘₯ = 0
2
20. Approximate the solutions for each equation on the interval 0 ≀ π‘₯ < 2πœ‹. Round
your answer to four decimal places.
(a) sin π‘₯ = βˆ’0.739
(b) cos π‘₯ = 0.4201
(c) tan π‘₯ = βˆ’5.17
4
21. Establish the following trigonometric identities.
(a)
(c)
(e)
tan π‘₯
(b)
= 𝑠𝑒𝑐 π‘₯
sin π‘₯
sin π‘₯βˆ’cos π‘₯
sin π‘₯
cos π‘₯βˆ’1
sin π‘₯
= 1 βˆ’ cot π‘₯
(d)
sin2 𝑑+cos2 𝑑
tan 𝑑
1βˆ’cos πœƒ
tan2 πœƒ
=
= cot 𝑑
cos2 πœƒ
cos πœƒ+1
= cot π‘₯ βˆ’ csc π‘₯
22. Solve the following oblique triangles.
(a) A = 30°, b = 12, c = 16
(b) a = 3.55, b = 4.08, c = 2.83
(c) B = 62.3°, C = 51.9°, c = 11.3
(d) C = 57.47°, b = 8.841, c = 0.777
(e) A = 22°, a = 10, c = 15
23. Find the area of the triangle ABC given a = 8.5, B = 102°, and C = 27°.
24. Convert the following polar equations into rectangular equations.
(a) π‘Ÿ = √7
(b) π‘Ÿ + 4 sin πœƒ = 0
(c) π‘Ÿ = 2 tan πœƒ
25. Convert the following rectangular equations into polar equations.
(a) π‘₯ + 𝑦 = 1
(b) 𝑦 2 = 2π‘₯ βˆ’ π‘₯ 2
(c) The circle centered at (0, βˆ’4) with radius 4.
26. (a) Convert (8, βˆ’
3πœ‹
4
) into rectangular coordinates.
(b) Convert (5√3, βˆ’5) into polar coordinates.
ANSWERS
1.
(a) 3
(c) π‘Ž2 βˆ’ 2π‘Ž
(e) π‘₯ 2 + 2π‘₯β„Ž + β„Ž2 βˆ’ 2π‘₯ βˆ’ 2β„Ž
(b) 0
(d) π‘Ž2 + 2π‘Ž
(f) 2π‘₯ + β„Ž βˆ’ 2
2.
(a)
(c)
(e)
(g)
(b) (βˆ’βˆž, βˆ’3) βˆͺ (βˆ’3, ∞)
(d) (βˆ’3, ∞)
(f) (0, ∞)
(βˆ’βˆž, ∞)
[βˆ’3, ∞)
(βˆ’βˆž, ∞)
(βˆ’βˆž, ∞)
5
(h) all real numbers except
(2𝑛+1)πœ‹
2
where n is an integer; that is, all real
πœ‹
numbers except the odd multiples of
2
(i) all real numbers except 2π‘›πœ‹ where n is an integer; that is, all real numbers
except the even multiples of Ο€
(j) [βˆ’1, 1]
(k) (βˆ’βˆž, ∞)
9π‘₯
3.
(a)
(b) 16π‘₯ 2 βˆ’ 44π‘₯ + 38
4.
(a) 𝑓 βˆ’1 (π‘₯) =
2+6π‘₯
1
π‘₯3
3
(b) 𝑓 βˆ’1 (π‘₯) = √π‘₯ βˆ’ 3
βˆ’3
5.
6.
(a) ellipse; (π‘₯ βˆ’ 2)2 +
(𝑦+1)2
4
= 1; center: (2, βˆ’1); vertices: (2, 1), (2, βˆ’3);
covertices: (1, βˆ’1), (3, βˆ’1); foci: (2, βˆ’1 + √3), (2, βˆ’1 βˆ’ √3);
maj. axis: π‘₯ = 2; min. axis: 𝑦 = βˆ’1; 𝑒 =
1 2
1
5
√3
2
5
1
1
(b) parabola; (𝑦 + ) = (π‘₯ βˆ’ ); vertex: ( , βˆ’ ); axis of symm: 𝑦 = βˆ’ ;
2
2
2
2
2
2
21
1
focus: ( , βˆ’ ); directrix: π‘₯ =
8
2
(c) hyperbola;
(π‘₯+2)2
4
βˆ’
(π‘¦βˆ’1)2
9
19
8
= 1; center: (βˆ’2, 1); vertices: (0, 1), (βˆ’4, 1);
foci: (βˆ’2 + √13, 1), (βˆ’2 βˆ’ √13, 1); trans. axis: 𝑦 = 1; conj. axis: π‘₯ = βˆ’2;
𝑒=
√13
2
7.
(𝑦 + 9)2 = βˆ’8(π‘₯ βˆ’ 7)
8.
vertical asymptotes: π‘₯ = 0, π‘₯ = ; horizontal asymptote: 𝑦 = 0
9.
vertical asymptote: π‘₯ = βˆ’2; missing point at π‘₯ = 2
7
4
10. 𝑦 = π‘₯ βˆ’ 20
6
11. 38.3 grams
12. 48.14 years
13. (a) $25,646.69
(b) $25,647.32
14. 4.11 years
15. (a) 1161.68 feet
(b) 13.29 feet
5
4
4
3
16. sec πœƒ = βˆ’ ; cot πœƒ = βˆ’
17. (a)
(b)
(c)
(d)
(e)
no asymptotes
(2𝑛+1)πœ‹
vertical asymptotes at π‘₯ =
where n is an integer
2
vertical asymptotes at π‘₯ = 2π‘›πœ‹where n is an integer
no asymptotes
πœ‹
πœ‹
horizontal asymptotes: 𝑦 = βˆ’ , 𝑦 =
2
18. (a) βˆ’
(c)
(e)
πœ‹
2
πœ‹
(b)
3
3πœ‹
4
(d) βˆ’
4
1
(f)
πœ‹
7πœ‹
11πœ‹
7πœ‹
6
11πœ‹
19. (a) { + π‘˜2πœ‹,
6
(b) { + π‘˜2πœ‹,
6
2πœ‹
(c) { +
9
πœ‹
6
π‘˜2πœ‹ 4πœ‹
3
,
9
4
3
+ π‘˜2πœ‹, where π‘˜ is an integer}
πœ‹
+ π‘˜2πœ‹, + π‘˜2πœ‹, where π‘˜ is an integer}
+
(d) {π‘˜πœ‹, + π‘˜2πœ‹,
4
πœ‹
πœ‹
π‘˜2πœ‹
3πœ‹
4
20. (a) 3.9731, 5.4516
(c) 1.7619, 4.9036
3
2
, where π‘˜ is an integer}
+ π‘˜2πœ‹,
5πœ‹
4
+ π‘˜2πœ‹,
7πœ‹
4
+ π‘˜2πœ‹, where π‘˜ is an integer}
(b) 1.1372, 5.1459
21. The answer is in working the problems.
22. (a) B β‰ˆ 46.94°, C β‰ˆ 103.06°, a β‰ˆ 8.21 (b) A β‰ˆ 58.54°, B β‰ˆ 78.62°, C β‰ˆ 42.84°
(c) A β‰ˆ 65.8°, a β‰ˆ 13, b β‰ˆ 13
(d) no triangle
(e) B1 β‰ˆ 12.19°, C1 β‰ˆ 145.81°, b1 β‰ˆ 5.636; B2 β‰ˆ 123.81°, C2 β‰ˆ 34.19°, b2 β‰ˆ 22.180
23. β‰ˆ 20.6 square units
7
24. (a) π‘₯ + 𝑦 = 7
(c) π‘₯ 4 + π‘₯ 2 𝑦 2 βˆ’ 4𝑦 2 = 0
2
2
1
(b) π‘₯ 2 + (𝑦 + 2)2 = 4
25. (a) π‘Ÿ =
cos πœƒ+sin πœƒ
(c) π‘Ÿ = βˆ’8 sin πœƒ
(b) π‘Ÿ = 2 cos πœƒ
26. (a) (βˆ’4√2, βˆ’4√2)
(b) (10, βˆ’ ) , (10,
6
πœ‹
5πœ‹
6
), etc
Related documents