Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CALCULUS 2 Name: _____________________________ WORKSHEET 7.1-1 1. Graph y  5 x and y  log 5 x . 2. Graph y  e x and y  ln x . Convert to log form. Convert to exponential form. 3. y  5 x 7. y  log 9 x 4. 243  35 8. 3  log 1000 5. x  e 7 9. x  ln 10  1 2 1 2 10. log 9 1 3  27 2 11. log 4 64 12. log 7 1 7 6. 4  Evaluate. 13. log 1 100 14. log 5 3 5 2 1 16 15. log 9 27 16. log 64 17. 11log11 21 18. 2log2 2 log2 4 CALCULUS 2 Name: _____________________________ WORKSHEET 7.1-2 Expand each logarithm. 1. log6 3x 2. log2 3. log4 xy2 4. log3 5. log3 xy4z 6. log2 (xy) 4 7. log5 2 z 8. log8 x 7 x  3y  2 3 3x 2 y z  34 3 x 2 y3 z4 Write each logarithmic expression as a single logarithm. 9. log3 7 – log3 x 10. 2 log5 x + log5 3 11. 2 3 log2 x – 3 log2 y 12. 13. 1 2 log7 x + 13 log7 y – 2 log7 z 14. log5 x – 4(log5 y + 2 log5 z) 15. log2 (x – 4) + 5 log2 (x+1) - 3 4 log2 (x-1) 16. 1 2 1 2 (log3 4 + log3 y) – 3 log3 z [log6 (x-2) + 2 log6 (x+1) – log6 (x+2) – 5 log6 x] Evaluate. 17. log 2 16 18. log a a 2 19. log 3 7 20. 6 log6 7 21. log 3 14.62 22. log a 23. 2 x  3 24. 3x 1  25 25. 23 x  4  5 26. 2 x  2  16 27. 3x 1  4 x 28. 31 x  52  3 x 29. e6 x  314 30. 225  31e .07 x 31. ln 2.1  ln e3.2 x 1 a Solve. CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-1 Find the derivative of each of the following: 1. y  x ln x 2. y  t ln t  t 4. y  ln x 2 5. y  ln x 3  3x  1 7. y  ln  sin3t   1 8. y  x 2 ln x  10. y  ln  ln x  11. y  ln  ln x   x  13 y  3ln    x 1 14. y  ln( x  4)3 16. y  x 2 ln( x 2 )  (ln x )3 17. y  19. y  log2 x 20. y  log10 x 3  x 2  3 3. y   ln x  6. y  ln2x 9. y 2 ln x x 12. y  ln( x 2  3x   ) 15. y  ln 3x  2 3 ln x  1   ln  2 2 x ln x  x    18. y  ln( x  x 2  1) 21. y  log3  sin t  Find the equation of the tangent line to the graph of f at the given point. 22. f ( x )  ln t ; t  5 24. f ( x )  lnsin x ; Find 23. f ( x )  ln(8  4t ); t  1 x  2 25. f ( x )  3x 2  ln x ; x  1 dy using implicit differentiation. dx 26. x 2  3ln y  y2  10 27. ln  xy   5x  30 CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-2 Find dy using logarithmic differentiation. dx 1. y  ( x  2)( x  4) 3. x( x  1)3 y (3x  1)2 5. y   2x  1  4 x 2 7. 9. 2. y  ( x  1)( x  2)( x  4) x( x 2  1) 4. y 6. y= y  ( x 2  1)( x 2  2)( x 2  3)2 8. y y  x 2x 10. y  x cos x  11. y  x x 2  x 9 x 1 x( x  2) (2x  1)(2x  2) x cos x ( x  1)sin x 12. y  e x x CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-3 Find the derivative of each of the following: 1. y  5x 4. y  e x 7. y  x 2e  x 2  10. y  ln 1  e 2x  13. y  e x (sin x  cos x ) 2 x 2. y  3x 5. y  e2x 8. y  e t  et   3 3. y  4cos x 6. y e 9. y  e 3/x  1  ex  11. y  ln  x  1e  12. y  14. y  ln e x 15. y  e  x 2 e x  e x 2 ln x  2 Find the equation of the tangent line to the graph of the function at the given point. 16. f ( x )  e1 x ; x  1 2 17. f ( x )  e2x  x ; x  2 18. f ( x )  ln e x ; x  2  e x  e x 19. f ( x )  ln   2 20. f ( x )  x 2e x  2xe x  2e x ; x  1 21. f ( x )  e  x ln x ; x  1   2 Find  ; x  0  dy using implicit differentiation. dx 22. xe y  10x  3 y  0 23. e xy  x 2  y2  10 Find the equation of the tangent line to the graph of the function at the given point. 24. xe y  ye x  1; (0,1) 25. 1  ln xy  e x  y ; (1,1) CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-4 Expand the logarithmic expression. x4 y 1. ln 4 2. ln 3 x 2  1 z 3. ln z( z  1)2 Write each expression as a single logarithm. 1 5. 2ln3  ln  x 2  1  2 6. 2ln x  ln( x  1)  ln( x  1) 8. ln x  ln4x   0 9. 7e5t  100 11. ln( x 4 )  ln( x 2 )  2 12. log3 y  3log3 y 2  14 13. y  ln x 14. y  x ln x 15. y  x 2e x ex 16. y  ln 1  ex 17. y  e  e x2 19. y  x e 1 20. y  e sin2 x 2 4. 3ln x  2ln y  4ln z Solve. 7. ln x  1  2 10. 2x Find Find 2 2 x 8   dy for each of the following: dx 2x 2 x 18. y  e  x2 2 21. y  63x dy for each of the following using logarithmic differentiation: dx  x 3  22. y   2   x 1 2 23. y  x x2  1 x 4 24. y   sin x  x Find the equation of the tangent line to the graph of the function at the given point. 2 1  25. f ( x )  4  x 2  ln  x  1  ; x  0 26. f ( x )  2e1 x ; x  1 2  Find dy for each of the following using implicit differentiation: dx 27. cos x 2  xe y 28. ye x  xe y  xy Find the equation of the tangent line to the graph of the function at the given point. 29. y ln x  y2  0; (e , 1) 30. ln( x  y )  x ; (0,1) CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-5 Find the intervals where f(x) is increasing and decreasing and the x-coordinates of any extrema. 1. f x   x  ln x 2. f x   x ln x 3. f x   ln x x 4. f x   ln x 2  2x  3 5. f x   1 x 1 x e  e 2 2 6. f x   xe  x 7. f x   x 2 e  x 8. f x   1  2  x e  x Find the intervals where f(x) is concave up and concave down and the x-coordinates of any points of inflection. 9. f x   e x  x 2  2 10. f x   xe  x 11. f x   xe x 12. f x   2 ln x x CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-6 Integrate: 1 1 1 1.  x  1 dx 2.  3x  2 dx 3.  3 - 2x dx 4. 3x 2  1  x 3  x dx 5. x x dx 2 1 6. x 2  2x  3  x 3  3x 2  9x dx 9. x 12.  3x - 1ln 3x - 1 csc 2 x dx 14.  cot x 15.  1  sin x 17.  cot x dx 18.  tan 2x dx 20.  cot x ln sinx  dx 21. 7. 10.  1 x 1 dx 1  xlnx dx sec 2 x dx 13.  tan x 16.  sec x tan x dx sec x - 1 19.  cot 3x - 1 dx 8. 11.   lnx 4 x dx ln2x 2 2x dx dx lnx dx cos x  dx tan lnx  dx x 2 CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-7 Integrate: 1. 5x  5e dx 2. 3 -x  - 4x e dx 3. 4  e x dx x 1 4. e  x 3 dx 5. e x  1  e  x dx 6. e 2x  1  e 2 x dx 7. x x  e 1 - e dx 8. e x - e x  e x  e  x dx 9. e x  e x  e x  e  x dx x2 10. 13. 2e x - 2e  x  e x  e  x 2  2x -1  ln e dx dx 5-ex 11.  2x dx e 14. e 2x  2e x  1 dx  ex   12.  e -x tan e -x dx 15. ex  1  e  x 4 dx CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-8 Evaluate the definite integrals: 1. 1 1 x  2dx 1 e2 6.  2 8x dx 4 9.  4  12 dx 1 x 8. x  4 0 11.  7.  e 1 x 5  tan xdx 1 13.  xe 16.  0 0 2 x 2 dx 14. xe  x 2dx 17. 2 e 4 0 1  0 e 2 x dx  0  2 2 x3 2 xe 2 0 2 12. dx cosx esinx dx 4 1 1 0 1  cos x dx x  sin x x 4 e 3 3 x 1 dx x dx e3 x dx x2 15.  3 18.  2 1 5  3x  1dx 3. 1 dx x ln x 5. 4. 10. 1  ln x 2 dx 2 7 x  4dx 9 2. 3 sec 2x tan 2xe sec 2 x dx CALCULUS 2 Name: _____________________________ WORKSHEET 7.2-9 1. Find the area of the region between the curve y  2. Find the area between the curves y  2x and the x-axis over the interval  2,2. 1 x2 1 1 and y  over the interval 1, e . x x 3. Find the area of the region above the curve y  2 and below the x-axis over the interval  4,1 . x2 4. Find the volume of the solid obtained by rotating the region under the curve y  1 x 1 , over the interval 0,1 , about the x-axis. 5. Find the area of the region enclosed by y  e x , y  3 and x  0. 6. Find the volume of the region enclosed by y  e x , y  0, x  ln 3 and x  0 , rotated about the x-axis. CALCULUS 2 Name: _____________________________ WORKSHEET 7.7 Assume exponential growth or decay for each of the following: 1. A bacterial culture starts with 500 bacteria. After 3 hours, there are 8000 bacteria. a. Find the number of bacteria after 4 hours. b. When will the population reach 30,000 bacteria? 2. A cell of a particular bacterium divides into 2 cells every 1/3 of an hour. The initial population of bacteria is 100 cells. a. Find the number of cells after 10 hours. b. When will the population reach 10,000 cells? 3. The population of a particular city doubled from 1890 to 1950. The population was 60,000 in 1950. What was the population in 2000? 4. The half life of carbon-14 is 5730 years. How old is a specimen when it contains 40% of its original quantity of carbon-14? 5. 30% of a radioactive substance disappears in 15 years. Find the half-life of the substance. 6. A particular substance triples in size every hour. At the end of 4 hours, the substance has a size of 10 units. What was the substance’s initial size? CALCULUS 2 Name: _____________________________ CHAPTER 7 PRACTICE TEST Expand the logarithmic expression: x 4 y  2  2 2. ln z4 Solve: 3. ln 4  2 ln x  2 Find Write the expression as a single logarithm: 1 2. 4 ln 2  ln x  1  5 ln y 3 4. 5e 3 t  11 5. 2 3x  4  8 dy for each of the following: dx  6. y  ln x 3  2x  7. y  ln 2x  12 3 3  2x 3 8. y  2 ln 4 x e 2x 9. y  ln 1  e x 10. y  e  x 11. y  2 1  12. y  3xe cos 4 x Find x5 ex 13. y  e 2 x  e  x  3 dy for each of the following using logarithmic differentiation: dx 14. y  3 x5 1  2x  2 15. y  x sin x Find the equation of the tangent line to the graph of the function at the given point: 16. y  ln x ; x  4 Find 17. y  xe 2 x ; x  0 dy using implicit differentiation: dx 18. x 2 y  y 2  e x Find the x coordinates of any maxima, minima and points of inflection: 19. y  xe  x 20. y  x 2 ln x Integrate: 4 dx 21.  2x  1 ln x 3 23.  25. e 5 x  e 5 x  e 5x  e 5x dx x dx  3 sec 2 x 22.  dx tan x 24. e 3x  e x  3 dx  e 2x 26. x 2 e 43x dx 3 Evaluate the definite integrals: 1 27.  e4 e2 1 dx x ln x 2 e x 28. 1 dx 3 2 x 1 29. Find the area enclosed by y  e x , x = 0, y = 0 and x = ln4. 30. Find the volume formed by rotating the area enclosed by y  1 x 1 , x = 2, x = 5 and y = 0 about the x-axis. 31. The half life of a particular radioactive substance is 876 years. If the initial size was 13 grams, what will be the size in 500 years? 32. The population of a certain organism tripled between 1920 and 1980. In what year will the population have quadrupled?