Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chemical Thermodynamics 6.1 FIRST LAW OF THERMODYNAMICS Section A Level-I 1. Extensive : The variables dependent on mass. Intensive : The variables independent of mass. Extensive : Enthalpy, Gibbs free energy Intensive : Density, gas constant, molarity 2. State Function : The variables defining condition of existence of system. e.g. pressure, temperature, volume. The functions which depends only on the initial and final state of the system. Path dependent function : The variable whose value changes with route or path when system moves from state I to state II. e.g. work, heat 3. Internal energy is the intrinsic form of energy. The two components of internal energy are kinetic energy and potential energy. 4. As per first law of thermodynamics q = DU + PDV when V is constant DV = 0 \ q = DU & when P is constant qp = DU + PDV and DU = U2 – U1 PDV = PV2 – PV1 \ (U2 – U1) + (PV2 – PV1) Þ (U2 + PV2) – (U1 + PV1) qp = H2 – H1 = DH \ 3 U + PV = H 5. (i) 0 (ii) 1 (iii) –2 6. DH = DU + Dng RT = -87.42 + (–2 ´ 8.314 ´ 10–3 ´ 298) KJ (iv) –2 = -92.37 KJ 7. C6H6 (l) + 15 O2 (g) ® 6CO2 (g) + 3H2O (l) 2 0.532 g gives DU = 22.3 KJ 22.3 ´ 78 = 3269.5 KJ 0.532 15 Dng = 6 – = -1.5 mol 2 DH = DU + Dng RT \ 78 g (1 mole) gives DU = = [-3269.5 + (-1.5) ´ 8.314 ´ 10–3 ´ 353] = -3274 KJ 8. q = 10000 J DV = (20 – 10) = 10 L Chapter-06 OLC.p65 1 12/7/07, 1:55 AM 6.2 Physical Chemistry for IIT-JEE w = -PDV = -1 ´ 10 = -10 L atm = -10 ´ 101 = -1010 J DU = q + w = (10000 – 1010)J DU = 8990 J 9. 2H2O2 (l) ® 2H2O (l) + O2 (g) DH°r = 2 DH°f H2O (l) – 2 DH°f H2O2(l) = 2 (-286) - 2(-188) = -572 + 376 = -196 KJ The reaction is exothermic. 10. OF2 (g) + H2O (g) ® O2 (g) + 2HF (g) DHo = [2 DH°f (HF)] – [ DH°f (OF2) + DH°f (H2O)] = [2 (-268.6)] – [23 + (-241.8)] DH = -318.4 KJ o Dng = 1 mol \ DUo = DHo – Dng RT = -318.4 KJ – (1) ´ 8.314 ´ 10–3 ´ 298 KJ = -318.4 – 2.5 = - 320.9 KJ 11. 1 1 H2 (g) + Cl2 (g) ® HCl (g) 2 2 DH°f = [ 1 1 BE (H2) + BE (Cl2)] – BE(HCl) 2 2 1 1 ´ 436 + ´ 242] – (431) 2 2 = -92 KJ/mol =[ H H 12. H — C º N (g) + 2H2 (g) ® H — C — N — H (g) H DH = [BE (C – H) + BE (C º N) + 2BE (H – H)] – [3BE (C – H) + BE (C – B) + 2BE (N – H)] -150 = [416 + BE (C º N) + 2 ´ 436] – [3 ´ 416 + 293 + 2 ´ 369] Chapter-06 OLC.p65 2 12/7/07, 1:55 AM 6.3 Chemical Thermodynamics -150 = 416 + BE ( C º N) + 872 – 2279 -150 = BE (C º N) – 991 BE (C º N) = -150 + 991 = 841 kJ/mol Cl 13. H — C — H (g) ® C (g) + 2H (g) + 2Cl (g) Cl DH = 2BE (C - Cl) + 2BE (C - H) = 2 ´ 326 + 2 ´ 416 = 1484 KJ/mol Dng = 4 \ DU = DH - Dng RT = 1484 KJ - 4 ´ 8.314 ´ 10-3 ´ 298 KJ = 1474 KJ 14. m = 52 g Dt = t2 – t1 = 275 – 25 = 250oC s = 0.444 J/g oC \ q = ms Dt = 52 ´ 0.444 ´ 250 = 5772 J = 5.77 kJ 15. First we calculate the heat changes for the water and the bomb calorimeter. q = ms D t qwater = 1200 ´ 4.184 ´ (23.05 – 21.22) = 9188 J qbomb = 1726 ´ (23.05 – 21.22) = 3159 J But qreaction = qbomb + qwater = 3159 + 9188 = 12347 J The molar mass of octane is 114g, so the heat of combustion of 1 mol of octane is 12347 ´ 114 0.257 = 5476879 J/mol = 5476.9 KJ/mol 16. q = ms D t qwater = 150 ´ 4.184 ´ (35.3 – 24.5) = 6778 J qbomb = 125 ´ (35.3 – 24.5) = 1350 J \ Chapter-06 OLC.p65 qreaction = 6778 + 1350 = 8128 J 3 12/7/07, 1:55 AM 6.4 Physical Chemistry for IIT-JEE The molar mass of magnesium is 24 g, so the heat of combustion of 1 mole of magnesium is 8128 ´ 24 = 45899 J/mol .0425 = 459 KJ/mol Level-II 1. C3H8 (g) + 5O2 (g) ® 3CO2 (g) + 4H2O (l) DH = -2220 kJ 2220 kJ of heat is supplied by 44 g C3H8 \ 350 kJ of heat is supplied by 44 ´ 350 = 6.94 g of C3H8 2220 2. 2 C (gr) + 2H2 (g) ® C2H4 (g) DH = ? Given: … (1) C(gr) + O2 (g) ® CO2 (g) … (b) DH = -394 kJ/mol 1 O2 (g) ® H2O (l) 2 … (c) DH = -286 kJ/mol H2(g) + C2H6(g) + 7 O2 (g) ® 2CO2 (g) + 3H2O (l) 2 … (d) C2H4(g) + H2 (g) ® C2H6 (g) … (5) DH = -1560 kJ/mol DH = -138 kJ/mol In order to find DH for reaction (1), we have DH = eq.(b) ´ 2 + eq.(3) ´ 3 – eq.(4) – eq.(5) = -394 ´ 2 + (-286) ´ 3 - (-1560) - (-138) = 52 kJ/mol 3. As per Born-Haber cycle DHf (RbCl) = DHatom (Rb) + IE (Rb) + 1 BE(Cl2) + EA of Cl + URbCl 2 Putting the data 1 ´ 242 + EA of Cl + (-675) 2 EA of Cl = -371 kJ/mol -431 = 86 + 408 + \ 4. (i) Cyclohexene has one double bond and naphthalene has five double bonds. So, heat of hydrogenation of naphthalene = 5 ´ (-120) = -600 kJ/mol + 5H 2 (ii) Chapter-06 OLC.p65 4 12/7/07, 1:55 AM 6.5 Chemical Thermodynamics Using BE data DHhyd = 5 ´ BE (C = C) + 5BE (H – H) – 5BE (C – C) – 10 BE (C – H) = (5 ´ 610) + (5 ´ 436) – (5 ´ 346) – (10 ´ 413) = -630 kJ/mol (iii) The C = C energy in Cyclohexene is different from C = C bond energy in naphthalene which leads to difference in values. 5. The mass of carbon in 10 kg coal is 8 kg 60% of 8 kg gives CO = 4800 g carbon 1 O2 ® CO DH = -110 kJ/mol 2 12 g carbon gives 110 kJ of head C+ 110 ´ 4800 = 44000 kJ 12 40 % of 8 kg = 3200 g carbon gives CO2 \ 4800 g carbon will produce C + O2 ® CO2 DH = -393 kJ/mol 12 g carbon gives 393 kg of heat 393 ´ 3200 = 104800 kJ 12 Total heat evolved by 10 kg coal is 104800 + 44000 = 148800 kJ In case the efficient oven is used, then \ 3200 g carbon will produce 7200 g C burn to give 393 ´ 7200 kJ = 235800 kJ of heat 12 110 ´ 800 kJ = 7333.33 kJ of heat 12 Total heat evolved by 10 kg coal is 7333.33 + 235800 = 243133.33 kJ 6. We calculate the heat changes for the water and the bomb calorimeter. and 800 g C burn to give q = ms Dt qwater = (2000) ´ (4.184) ´ (25.84 – 20.17) = 4.74 ´ 104 J qbomb calorimeter = (1.80 ´ 103) (25.84 – 20.17) = 1.02 ´ 104 J Now, we write qreaction = -(qwater + qbomb) = -(4.74 ´ 104 + 1.02 ´ 104) = -5.76 ´ 104 J The molar mass of naphthalene is 128 g, so the heat of combustion of 1 mol of naphthalene is - 5.76 ´ 104 ´ 128 = -5.14 ´ 106 J/mol = -5.14 ´ 103 kJ/mol 1.435 7. If we assume that no heat is lost to the surroundings, we write Chapter-06 OLC.p65 5 12/7/07, 1:55 AM 6.6 Physical Chemistry for IIT-JEE qsystem = qsoln. + qcalorimeter + qreaction = 0 qreaction = -(qsoln. + qcalorimeter) \ Mass of a 100 mL solution is 100 g (because d = 1.0 g/mL), then qsolution = (1.0 ´ 102 + 1.0 ´ 102) ´ 4.184 ´ (24.90 – 22.50) = 2.01 ´ 103 J qcalorimeter = 335 ´ (24.90 – 22.50) = 804 J We write, qreaction = (-2.01 ´ 103 + 804) = -2.81 ´ 103 J = -2.81 kJ This is the heat released by reacting 0.05 mol NaOH and 0.05 mol HCl, Therefore, molar heat of neutralisation is - 2.81 = -56.2 kJ/mol 0.05 8. qcalorimeter = Cv ´ DT = -20.7 kJ/K ´ (298.89 – 298)K = -18.4 kJ (-ve sign indicates the exothermic reaction) DH for the combustion of the 0.562 g of carbon is -18.4 kJ (DH = DU as Dng = 0) - 18.4 ´ 12 = -392.88 kJ/mol 0.562 Thus, the enthalpy of combustion of carbon graphite is -329.88kJ/mol 9. The given reaction can be obtained as follows: DH = -36 kJ mol-1 B2H6 (g) ® O2 (g) + 3H2 (g) For 1 mol carbon combustion, DH = 3 O2 (g) ® B2O3 (s) 2 3[H2O(l) ® H2O (g)] 2B (s) + 3[H2 (g) + 1 O2(g) ® H2O (l)] 2 Add B2H6 (g) + 3O2 (g) ® B2O3 (s) + 3H2O (g) 10. The given cycle process is shown in figure. It is given that DH = -1273 kJ mol-1 DH = 3 ´ 44 kJ mol-1 DH = -3 ´ 286 kJ mol-1 DH = -2035 kJ mol-1 VA V = 2 and D = 4 VB VB TA = 27°C (a) The process A ® B in which the plot of V versus T is linear occurs at constant pressure condition. Hence, we will have VA V = B TA TB æV ö TB = ç B ÷ TA = (b) (300) (K) = 600 K è VA ø or Chapter-06 OLC.p65 6 12/7/07, 1:55 AM 6.7 Chemical Thermodynamics (b) The process A ® B occurs at constant pressure, Hence qA ® B = nCp,m (TB - TA) æ5 ö = (2 mol) ç R ÷ (6000 K - 300 K) è2 ø = (1500 mol K) R The process B ® C occurs at constant temperature. From first law of thermodynamics, dU = dq - dw Since the internal energy of an ideal gas depends only on temperature, will have dU = 0 and dq = dW q B ® C = WB ® C = = nRTB ln ò PdV = nRTB ò dV V VC V = nRTB ln D VB VB (as VC = VD) æV V ö = nRTB ln ç D A ÷ è VA VB ø = (2 mol) R (600 K) ln (4/2) = (12 mol K) R In 2 The process C ® D occurs at constant volume. Hence qC ® D = nCv,m (TA - TB) æ3 ö = (2 mol) ç R ÷ (300 K - 600 K) è2 ø = -(900 mol K) R The process D ® A occurs at constant temperature. Hence qD ® A = wD ® A = nRTA In VA VD = (2 mol) R (300 K) In (1/4) = - (1200 mol K) R In 2 (c) Since the process ABCDA is a cyclic process, we will have D =0 W=q where q = qA ® B + qB ® C + qC ® D + qD ® A = (1500 mol K) R + (1200 mol K) R In 2 - (900 mol K) R - (1200 mol K) R In 2 = (600 mol K) R Chapter-06 OLC.p65 7 12/7/07, 1:55 AM 6.8 Physical Chemistry for IIT-JEE 11. From the first law of thermodynamics, we have dU = dq + dw Since, the processes occur adiabatically, dq = 0. This gives dU = dw For the first process liquid (2 bar, 100 mL) ® liquid (100 bar, 100 mL) dV = 0. Hence dw = -PdV = 0. For this process dU = 0 or DU = 0 For the second process liquid (100 bar, 100 mL) ® liquid (100 bar, 98 mL) w = -PDV = -(100 bar) (98 mL - 100 mL) = 200 bar mL Hence, for both the processes DU = 0 + 200 bar mL = 200 bar mL = (200) (105 N m-2) (10-2 m)3 = 20 J DH = DU + D(PV) = 200 bar mL + [(100 bar) (98 mL) - (2 bar) (100 mL)] = 100 bar ml + 9600 bar mL = 9700 bar mL = 9700 (105 N m-2) (10-2 m)3 = 970 J SECOND LAW OF THERMODYNAMICS Section A Level-I 1. DHfus = 6.025 ´ 103 J mol-1 for 1 g ice into H2O (l) DH = \ DSfus = 6.025 ´ 103 J 18 6.025 ´ 103 J = 1.23 J K-1 g-1 18 ´ 273 2. DG will be negative and the reaction will occur spontaneously when TDS >> DH, and this is possible only at high temperature. XXV 3. 3HC º CH (g) WX X C6H6 (g) DG ° = DG° f (C6H6) -3DG° f (CH º CH) = 1.24 ´ 105 -3 ´ 2.09 ´ 105 = -5.03 ´ 105 J æ - Ä G° ö K = antilog ç è 2.303 RT ÷ø Chapter-06 OLC.p65 8 12/7/07, 1:55 AM 6.9 Chemical Thermodynamics æ ö 5.03 ´ 105 = antilog ç ÷ è 2.303 ´ 8.314 ´ 298 ø K = 1.43 ´ 1088 As K > 1, the process can be recommended for making benzene. 4. H2O (g) + C (gr) ® CO (g) + H2 (g) DH ° = DH°f (CO) -DH° f H2O (g) = -110.5 -2 (-242) = + 131.5 KJ/mol DS ° = (197.6 + 130.6) - (189 + 5.69) = 133.51 J mol-1 K-1 Temperature at which the DG° = 0 is T= Ä H° 131.5 ´ 103 = ÄS° 133.51 T = 985 K At T > 985 K, the reaction would become spontaneous. XXV 5. 2H2O (l) WX X 2H2 (g) + O2 (g) \ H2 (g) K = 6.8 ´ 10-84 1 XXV O2 (g) WX X H2O (l) 2 1 æ ö K¢ = ç è 6.8 ´ 10 -84 ÷ø 1/2 K¢ = 3.83 ´ 1041 DG° f (H2O) = -2.303 RT log K¢ = -2.303 ´ 8.314 ´ 298 log 3.83 ´ 1041 = -237271 J/mol = -237.271 kJ/mol 6. The temperature at which the DG is zero is equal to T= T= ÄH ÄS 30.56 ×103 J mol -1 66 J K -1 mol -1 T = 463.03 K Above this temperature, the sign of DG is negative. Chapter-06 OLC.p65 9 12/7/07, 1:55 AM 6.10 Physical Chemistry for IIT-JEE 7. The reactions given are: C + O2 ® CO2 (1) DG = -380 kJ/mol XXV 2C + O2 WX X 2CO 4Al + 3O2 ® 2Al2O3 2Pb + O2 ® 2PbO 2Al2O3 ® 4Al + 3O2 (b) (c) (d) (5) DG DG DG DG Multiply eq. (2) by = -500 kJ/mol = -22500 kJ/mol = -120 kJ/mol = 22500 kJ/mol 3 2 3 XXV O2 WX (6) DG = -750 kJ/mol X 3CO 2 Add eq. (5) and eq. (6) (representing reduction) (Divide eq. (5) by 2) 3C + 22500 -750 = 10500 kJ/mol 2 since, DG is positive, so reduction of Al2O3 not possible by C. Similarly, if we couple eq. (1) with eq. (5), DG is positive i.e. non spontaneous, and when same principle is employed for PbO reduction, DG comes out to be negative i.e. reduction of PbO with C forming CO or CO2 is spontaneous. 8. Work to be done by person = mgh = 60 ´ 9.81 ´ 100 = 58860 J This is 40% of energy required by combustion of glucose. Al2O3 + 3C ® 2Al + 3CO DG = 58860 = 147150 J 0.4 180 g glucose gives = 2808 ´ 1000 J. 2808 ´ 103 J of energy required 180 g glucose. So total energy required = \ 147150 J of energy requires = 180 ´ 147150 2808 ´ 103 = 9.43 g 9. For the given reaction, we have CO (g) + 1 O2 (g) ® CO2 (g) 2 Dr S° = -0.094 kJ K-1 mol-1 D f G ° of CO (g) = -137.2 kJ mol-1; Df Go of CO2 (g) -394.4 kJ mol-1 The free-energy change of the reaction is Dr G ° = Df G° (CO2, g) -Df G° (CO, g) = (-394.4 + 137.2) kJ mol-1 = -257.2 kJ mol-1 Since Dr G° is negative, the reaction is spontaneous. The enthalpy change of the reaction is Dr H ° = Dr G° + T Dr S ° Chapter-06 OLC.p65 10 12/7/07, 1:55 AM 6.11 Chemical Thermodynamics = [-257.2 + (300) (-0.094)] kJ mol-1 = -285.4 kJ mol-1 Since, Dr H° is negative, the reaction is exothermic. 10. We have 1- pentyne 1.3 % (A) 2 - pentyne 95.2 % (B) 1, 2- pentadiene (3.5 %) (C) XXV For the equilibrium B WX X A, we get Keql = DG01 [A]eq [B]eq = 1.3 = 1.366 ´ 10-2 95.2 = - RT In Keql = - (8.314 J K-1 mol-1) (448 K) In (3.666 ´ 10-2) = 15991 J mol-1 XXV For the equilibrium B WX X C, we get Keq2 = [C]eq [B]eq = 3.5 = 3.676 ´ 10-2 95.2 DG02 = - RT In Keq2 = - (8.314 J K-1 mol-1) (448 K) In (3.676 ´ 10-2) = 12304 J mol-1 XXV For the equilibrium B WX X A, we get DG01 = Df G° A - Df G° B = 15991 J mol-1 Df G° A = Df G° B + 15991 J mol-1 or XXV similarly for B WX X C we have Df G° C = Df G°B + 12304 J mol-1 Diagrammatically, we have G C(g) + H2(g) A C B 15991 J mol–1 12304 J mol–1 Hence, the order of stability of isomers is B>C>A Chapter-06 OLC.p65 11 12/7/07, 1:55 AM 6.12 Physical Chemistry for IIT-JEE 11. (i) The p-V diagram of the given processes a, b and c are shown in figure below. (a) Reversible isobaric expansion (1 atm, 20 L) ® (1 atm, 40 L) (b) Reversible isochoric expansion (1 atm, 40 L) ® (0.5 atm, 40 L) (c) Reversible isothermal compression (0.5 atm, 40 L) ® (1 atm, 20 L) 1.0 (a) (1 atm, 20 L) (1 atm, 40 L) 0.8 p/atm (b) (c) 0.6 0.4 (0.5 atm, 40 L) 0.2 10 20 30 40 V/L (ii) Work involved in the given processes are as follows: w1 = p(DV) = (1 atm) (40 L - 20 L) = 20 L atm Process a = 20 ´ 101.325 J = 2026.5 J Process b w2 = 0, since the process occurs at constant volume Process c w3 = nRT In V2 V = p1 V1 In 2 V1 V1 = (1 atm) (20 L) In (20 L/40 L) = -13.86 L atm = -13.86 ´ 101.325 J = -1404.4 J The total work done is w = w1 + w2 + w3 = 2026.5 J + 0 - 1404.4 J = 622.1 J Since, the given processes constitute a cyclic process, DU = 0, and from the first law of thermodynamics, we get q = - w = - 622.1 J (iii) Since the overall process is a cyclic process. DU = 0 DH = 0 Chapter-06 OLC.p65 12 and DS = 0 12/7/07, 1:55 AM 6.13 Chemical Thermodynamics 12. Initially, we have æ 5 mol ö (20 bar) = 10 bar p(NO2) = x NO2 p = ç è 10 mol ÷ø æ 5 mol ö p(N2O4) = x N2O4p = ç (20 bar) = 10 bar è 10 mol ÷ø Qp = (p NO2 ) 2 p N 2O 2 = (10 bar)2 = 10 bar (10 bar) For the given reaction, Dr G ° = 2Df G° (NO2) - Df G° (N2O4) = 2 (50 kJ mol-1) - 100 kJ mol-1 =0 From the given reaction, DrG = Dr G° + RT ln Qp we get Dr G = 0 + (8.314 J K-1 mol-1) (298 K) In (10) = (8.314 ´ 298 ´ 2.303) J mol-1 = 5705.85 J mol–1 Chapter-06 OLC.p65 13 12/7/07, 1:55 AM