Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Impedance Concepts and Thévenin Equivalent Systems Learning Objectives Electrical impedance Description of 1-D waves in a fluid equation of motion/constitutive equation plane l waves - pulses l andd harmonic h i waves frequency and wavelength acoustic impedance Thévenin equivalent electrical circuits Concept of Impedance basic circuit elements V(t) I(t) resistor it V (t ) = R I (t ) capacitor dV (t ) C = I (t ) dt i d inductor dI ( t ) V (t ) = L dt For alternating (harmonic) voltages and currents I (t ) = I 0 exp ( −iω t ) resistor capacitor inductor general impedance V ( t ) = V0 exp ( −iω t ) V0 = R I 0 I0 V0 = −iω C V0 = −iω L I 0 V0 = Z (ω ) I 0 electrical impedance Z = Ze (ohms) 1-D plane wave traveling wave in a fluid p(x, t ) … pressure in the fluid ρ … fluid density vx (x, t) … velocity dy p dz dx ∂p p + dx ∂x ∑ F = ma ∂vx ∂p ⎞ ⎛ − ⎜ p + dx ⎟ dydz + pdydz = ρ dxdydz ∂x ⎠ ∂t ⎝ Equation of motion ∂vx ∂p − =ρ ∂x ∂t Constitutive equation ∂u x p = −K ∂x dux dx 1-D wave equation i K … compressibility ibili off the h fluid fl id ux … displacement ∂u x ΔV = = relative change in volume ∂x V ∂ 2 ( ∂u x / ∂x ) ∂2 p − 2 =ρ ∂x ∂t 2 ρ ∂2 p = K ∂t 2 ∂2 p 1 ∂2 p − 2 2 =0 2 ∂x c f ∂t cf = K ρ wave speed in the fl id fluid 1-D plane wave solutions p = f ( t − x / c f ) + g (t + x / c f ) f g x Harmonic waves (or Fourier transforms of transient waves) p = A ( f ) exp ⎡⎣ −2π if ( t − x / c f ) ⎤⎦ + B ( f ) exp ⎡⎣ −2π if ( t + x / c f ) ⎤⎦ Fourier transform pair +∞ V ( f ) = ∫ v(t ) exp(2πi f t )dt −∞ +∞ v(t ) = ∫ V ( f ) exp(−22πi f t )df −∞ Let then V ( f ) = V% ( f ) exp ⎡⎣ 2π if ( x / c f ) ⎤⎦ v (t ) = +∞ ∫ V% ( f ) exp ⎡⎣2π if ( x / c −∞ f − t ) ⎤⎦ df 1-D plane wave traveling in the +x-direction Thus v(t) is a superposition of plane waves Thus, Now, let u = (t − x / c f ) +∞ Then % ( f ) exp [ −2π ifu ] df = v% ( u ) = v% ( t − x / c V f ∫ ) −∞ where v% ( t ) ↔ V% ( f ) so v% ( t − x / c f ) = +∞ ∫ V% ( f ) expp ⎡⎣2π iff ( x / c −∞ f − t ) ⎦⎤ dff Thus, we can always synthesize a traveling plane wave pulse with i h a superposition i i off harmonic h i plane l waves. various forms of a harmonic plane wave traveling in the +x-direction p = A exp ( 2π ifx / c f − 2π ift ) = A exp ( 2π ifx / c f − iωt ) f = ω / 2π = A exp ( ikx − iωt ) k = ω / cf = A exp ( 2π ix i / λ − iωt ) λ = 2π / k = c f / f f ... frequency (cycles/sec) ω …frequency (rad/sec) k … wave number (rad/length) λ …wavelength wavelength (length/cycle) p = A exp ( 2π ifx / c f − 2π ift ) magnitude of the pressure at a fixed x versus time, t: t T… period (sec/cycle) 2π ifT = 2π i f = 1 T ω = 2π f rad/cycle f frequency ( l / ) (cycles/sec) circular frequency q y ((rad/sec)) p = A exp ( 2π ifx / c f − 2π ift ) magnitude i d off the h pressure at a fixed fi d time, i t, versus distance, di x: x λ ... wavelength (length/cycle) fx = 1 λ k = 2π f x = rad/cycle spatial frequency (cycles/length) 2π λ spatial circular frequency ( (wave number) b ) (rad/length) ( d/l h) p = A exp ( 2π ifx / c f − 2π ift ) magnitude of the pressure at a fixed time, t, versus distance, x: x λ ... wavelength (length/cycle) 2π i f λ / c f = 2π i f λ = cf fundamental relationship that shows how the f frequency off a plane l harmonic h i traveling li wave is i related to its wavelength Example: consider a 5MHz plane wave traveling in water ( c =1500m/sec). What is the wave length? 1.5 × 106 mm / sec λ= 5 × 106 cycle l / sec = 0.3mm / cycle F a plane For l pressure wave traveling li in i the h x-direction di i p = f (t − x / c f Let ) u = t − x / cf then ∂vx ∂p − =ρ ∂x ∂t ∂p df ( u ) ∂u 1 = =− f′ ∂x du ∂x cf ∂vx 1 = f′ ∂t ρc f 1 vx = ρc f ∫ 1 f ′∂t = ρc f df f p ∫ du du = ρ c f = ρ c f p = ρ c f vx za = ρc f S … area x specific acoustic impedance of a pplane wave (p (pressure/velocity) y) F = pS = ρ c f vx S F = Z a vx Z a = ρc f S acoustic impedance of a plane wave (force/velocity) F more generall (harmonic) For (h i ) waves F = Z a (ω ) v Thévenin equivalent circuit (harmonic voltages and currents) R1 Vi C1 R2 R3 V L1 I Vs(ω) ( ) Zeq(ω) I V Determining the Thévenin equivalent source Vs(ω) Zeq(ω) V0 open-circuit voltage Vs = V0 D t Determining i i the th Thévenin Thé i equivalent i l t impedance i d Vs − VL = Z eqe I VL = RL I Vs(ω) Zeq(ω) RL VL ⎛ Vs ⎞ Z eq = RL ⎜ − 1⎟ ⎝ VL ⎠ Example: find the Thévenin equivalent circuit for the following circuit R Vi C R Vi I V0 C open-circuit p voltage g Vi − V0 = IR V0 = I −iω C eliminatingg I,, we find Vi V0 = 1 − iω RC Thévenin equivalent source R Vi I1 Vi − VL = I1 R C RL I2 VL = I 2 RL VL VL I1 − I 2 ) ( = −iω C Vi eliminating I1 , I2 gives VL = (1 − iω RC ) + R / RL so ⎧⎪ (1 − iω RC ) + R / RL ⎫⎪ ⎛ V0 ⎞ Z eq = RL ⎜ − 1⎟ = RL ⎨ − 1⎬ (1 − iω RC ) ⎪⎩ ⎝ VL ⎠ ⎭⎪ ⎧⎪ R / RL ⎫⎪ R = RL ⎨ = ⎬ ⎪⎩ (1 − iω RC ) ⎪⎭ (1 − iω RC ) R Vi((ω)) Vi (ω ) VS (ω ) = 1 − iω RC C Z eq (ω ) = R 1 − iω RC In many EE books the equivalent impedance is obtained by simply shorting out (removing) the source and examining the ratio V/I at the output port: R I I1 V C V = R ( I − I1 ) I V= 1 −iωC V = R ( I + iωCV ) V (1 − iω RC ) = RI V R Z eq = = I 1 − iω RC