Download Introduction to Trigonometry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction to Trigonometry
Exercise 3
1. Evaluate :
(iii) cos 48° – sin 42°
= cos 48° - sin (90° - 48°)
= cos 48° - cos 48° = 0
(iv) cosec 31° – sec 59°
= cosec 31° - sec (90° - 31°)
= cosec 31° - cosec 31° = 0
2. Show that :
(i) tan 48° tan 23° tan 42° tan 67° = 1
Solution: tan 48° tan (90° - 48°) tan 23° tan (90° - 23°)
= tan 48° cot 48° tan 23 ° cot 23°
=1 x 1 = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Solution: cos 38° cos(90°-38°) – sin 38° sin (90° - 38°)
= cos 38° sin38° - sin38° cos 38° = 0
3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Solution: tan 2A = cot (90°-2A)
Or, cot (90°-2A) = cot(A-18°)
Or, 90° - 2A = A - 18°
Or, 108° = 3A
Or, A = 36°
4. If tan A = cot B, prove that A + B = 90°.
Solution: tan A = cot (90°-A)
So, B = 90°-A
Or, A + B = 90°
5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution: sec 4A = cosec (90°-4A)
Or, cosec (90°-4A) = cosec(A-20°)
Or, 90°-4A = A-20°
Or, 110° = 5A
Or, A = 22°
7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0°
and 45°.
Solution: sin 67° + cos 75°
= sin (90° - 23°) + cos (90° - 15°)
= cos 23° + sin 15°
Related documents