Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Over Lesson 5–3
Solve x 2 – x = 2 by factoring.
A. 2, –1
B. 1, 2
0%
A
B
C
0%
D
D
A
0%
B
D. –1, 1
C
C. 1, 1
A.
B.
C.
0%
D.
Over Lesson 5–3
Solve c 2 – 16c + 64 = 0 by factoring.
A. 2
B. 4
0%
A
B
C
0%
D
D
A
0%
B
D. 12
C
C. 8
A.
B.
C.
0%
D.
Over Lesson 5–3
Solve z 2 = 16z by factoring.
A. 1, 4
B. 0, 16
0%
A
B
C
0%
D
D
A
0%
B
D. –16
C
C. –1, 4
A.
B.
C.
0%
D.
Over Lesson 5–3
Solve 2x 2 + 5x + 3 = 0 by factoring.
A.
A
0%
0%
B
D.
A
B
C
0%
D
D
C. –1
A.
B.
C.
0%
D.
C
B. 0
Over Lesson 5–3
Write a quadratic equation with the roots –1 and 6
in the form ax 2 + bx + c, where a, b, and c are
integers.
A. x2 – x + 6 = 0
0%
B
D. x2 – 6x + 1 = 0
A
0%
A
B
C
0%
D
D
C. x2 – 5x – 6 = 0
C
B. x2 + x + 6 = 0
A.
B.
C.
0%
D.
• imaginary unit
• pure imaginary number
• complex number
• complex conjugates
Definitions
The imaginary unit is
The imaginary number is
i2
1
i
For any positive real numbers b
-b
2
b
2
1 ib
1
Square Roots of Negative Numbers
A.
Answer:
A.
A.
B.
0%
B
A
0%
A
B
C
0%
D
D
D.
C
C.
A.
B.
C.
0%
D.
Square Roots of Negative Numbers
B.
Answer:
B.
A.
B.
0%
B
A
0%
A
B
C
0%
D
D
D.
C
C.
A.
B.
C.
0%
D.
Products of Pure Imaginary Numbers
A. Simplify –3i ● 2i.
–3i ● 2i = –6i 2
= –6(–1)
=6
Answer: 6
i 2 = –1
A. Simplify 3i
5i.
A. 15
B. –15
0%
B
A
0%
A
B
C
0%
D
D
D. –8
C
C. 15i
A.
B.
C.
0%
D.
Products of Pure Imaginary Numbers
B.
1
4
1 2
2
Answer:
6
6
6
B. Simplify
.
A.
B.
0%
B
A
0%
A
B
C
0%
D
D
D.
A.
B.
C.
0%
D.
C
C.
Equation with Pure Imaginary Solutions
Solve 5y 2 + 20 = 0.
5y 2 + 20 = 0
5y 2 = –20
y 2 = –4
Original equation
Subtract 20 from each side.
Divide each side by 5.
Take the square root of
each side.
Answer: y = 2i
Solve 2x 2 + 50 = 0.
C.
5
D.
25
0%
0%
A.
B.
C.
0%
D.
A
B
C
0%
D
D
25i
C
B.
B
5i
A
A.
Equate Complex Numbers
Find the values of x and y that make the equation
2x + yi = –14 – 3i true.
Set the real parts equal to each other and the imaginary
parts equal to each other.
2x = –14
Real parts
x = –7
Divide each side by 2.
y = –3
Imaginary parts
Answer: x = –7, y = –3
Find the values of x and y that make the equation
3x – yi = 15 + 2i true.
A. x = 15
y=2
0%
B
0%
A
D. x = 5
y = –2
A
B
C
0%
D
D
C. x = 15
y = –2
A.
B.
C.
0%
D.
C
B. x = 5
y=2
Add and Subtract Complex Numbers
A. Simplify (3 + 5i) + (2 – 4i).
(3 + 5i) + (2 – 4i) = (3 + 2) + (5 – 4)i
=5+i
Answer: 5 + i
Commutative and
Associative
Properties
Simplify.
A. Simplify (2 + 6i) + (3 + 4i).
A. –1 + 2i
B. 8 + 7i
0%
B
A
0%
A
B
C
0%
D
D
D. 5 + 10i
C
C. 6 + 12i
A.
B.
C.
0%
D.
Add and Subtract Complex Numbers
B. Simplify (4 – 6i) – (3 – 7i).
(4 – 6i) – (3 – 7i) = (4 – 3) + (–6 + 7)i Commutative and
Associative
Properties
=1+i
Answer: 1 + i
Simplify.
B. Simplify (3 + 2i) – (–2 + 5i).
A. 1 + 7i
B. 5 – 3i
0%
B
A
0%
A
B
C
0%
D
D
D. 1 – 3i
C
C. 5 + 8i
A.
B.
C.
0%
D.
Multiply Complex Numbers
(1 + 4i)(3 – 6i)
= 1(3) + 1(–6i) + 4i(3) + 4i(–6i)
FOIL
= 3 – 6i + 12i – 24i 2
Multiply.
= 3 + 6i – 24(–1)
i 2 = –1
= 27 + 6i
Add.
Answer: 27 + 6i
(1 – 3i)(3 + 2i)
A. 4 – i
B. 9 – 7i
C. –2 – 5i
D. 9 – i
A.
B.
C.
D.
A
B
C
D
Divide Complex Numbers
A.
3 – 2i and 3 + 2i are
conjugates.
Multiply.
i2 = –1
a + bi form
Answer:
A.
A.
B. 3 + 3i
0%
A
B
C
0%
D
D
A
0%
B
D.
C
C. 1 + i
A.
B.
C.
0%
D.
Divide Complex Numbers
B.
Multiply by
Multiply.
i2 = –1
a + bi form
Answer:
.
B.
A.
A
0%
0%
B
D.
A
B
C
0%
D
D
C.
A.
B.
C.
0%
D.
C
B.
Related documents