Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
3.5: The Derivative of Trigonometric Functions Key facts: Why is this true? For f (x) = sin x: f (0 + h) − f (0) h→0 h sin h = lim = 1. h→0 h d sin x = cos x dx d cos x = − sin x dx f 0 (0) = lim And for g (x) = cos x: y 1 y = sin(x) x π 2 y = cos(x) Or use the derivative plotter. g (0 + h) − g (0) h→0 h cos h − 1 cos h + 1 = lim · h→0 h cos h + 1 sin h − sin h = lim · = 0. h→0 h cos h + 1 g 0 (0) = lim We can use the angle addition formulas for sin x and cos x to show the general case (see pp 149, 150). Derivatives of other trig functions: Since tan x = sin x cos x we have At which x ∈ [−π, π] is there a horizontal tangent in the graph y = 2 sin x + x d d sin x − sin x dx cos x cos x dx d tan x = dx cos2 x Set the derivative equal to zero: 2 1 cos x + sin2 x = = dy cos2 x cos2 x = 2 cos x + 1 = 0, if 2 dx = sec x. 1 2π cos x = − . Therefore, x = ± . 2 3 Similarly, since cot x = cos x/ sin x sec x = 1/ cos x and csc = 1/ sin x, y d cot x = − csc2 x, dx d sin x sec x = = sec x tan x, dx cos2 x d cos x csc x = − 2 = − csc x cot x. dx sin x y= 2π 3 + √ 3 2 x π y = − 2π − 3 √ 3 Find the derivative for each of the following functions. 1 f (x) = √ cos x + 5x 2 tan x x 1 d d 1 d d 0 √ cos x + √ f (x) = cos x + 5x 2 tan x + 5x 2 tan x dx dx dx x x dx 1 −3/2 1 =− x cos x − √ sin x + 10x tan x + 5x 2 sec2 x. 2 x For the following, use (uvw )0 = u 0 vw + uv 0 w + uvw 0 . g (x) = xe −x cos x d d d g 0 (x) = (x)e −x cos x + x (e −x ) cos x + xe −x (cos x) dx dx dx = 1 · e −x cos x + x(−e −x ) cos x + xe −x (− sin x) = e −x (1 − x) cos x − x sin x . Simple Harmonic Motion (pendulum or spring): s = A sin t. Find the velocity and acceleration: s 0 = A cos t, s = −A sin t.