Download Section 10.1 Radical Expressions and Functions = A Square Root of

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 10.1 Radical Expressions and Functions
Definitions and Notation
๏ƒ˜ A Radical Expression is any expression containing a radical.
๐’
๏ƒ˜ The principal nth root of a is represented by โˆš๐’‚, where n is index and a is radicand.
๏ถ If n is 2, the nth root is called a square root and represented by โˆš๐‘Ž.
3
๏ถ If n is 3, the nth root is called a cube root and represented by โˆš๐‘Ž
5
9
4
๏ถ If n is 4 or more, fourth root( โˆš๐‘Ž), fifth root( โˆš๐‘Ž), ninth root( โˆš๐‘Ž), etc.
๐’
nth root โˆš๐’‚
๏ƒ˜ If n is odd, then a can be any real number; positive and negative real numbers
๏ƒ˜ If n is even, then a must be nonnegative (0 and positive real numbers).
๏ƒ˜ For any real number a,
๐‘›
1. If n is odd, โˆš๐‘Ž๐‘› = ๐‘Ž
๐’
2. If n is even, โˆš๐’‚๐’ = |๐’‚| = ๐’‚
๐’
๐’Ž
๏ƒ˜ Rational Exponent: โˆš๐’‚๐’Ž = ๐’‚ ๐’
Square Root
๏ƒ˜ If ๐’ƒ๐Ÿ = ๐’‚, then b is a square root of a.
๏ƒ˜ If a is a nonnegative real number and the nonnegative number b such that ๐‘ 2 = ๐‘Ž, then
b is the principal square root of a.
๏ƒ˜ A Square Root of a negative number is not a real number
๏ƒ˜ The Product and Quotient of Square Root
If a and b are real numbers, then
๏ƒ˜ โˆš๐‘Ž๐‘ = โˆš๐‘Ž โˆ™ โˆš๐‘
๐‘Ž โˆš๐‘Ž
๏ƒ˜ ๏ฟฝ =
,
๐‘โ‰ 0
๐‘ โˆš๐‘
๏ƒ˜ Notice that the Principal Square Root NEVER BE NEGATIVE.
Square Root Functions
๏ƒ˜ A square root function is defined as
๐‘“(๐‘ฅ) = โˆš๐‘ฅ , where ๐‘ฅ โ‰ฅ 0.
Exercises
(Solution 1)
By Definition
The principal square root of 9 is 3,
because 32 = 9
Thus, โˆš9 = 3
๐‘š
๐‘›
By Rational Exponent โˆš๐‘Ž๐‘š = ๐‘Ž ๐‘›
โˆš9 โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  2
2
โˆš9 = ๏ฟฝ32 = 32 = 31 = 3
Cheon-Sig Lee
www.coastalbend.edu/lee
Page 1
Section 10.1 Radical Expressions and Functions
(Solution 2)
By Definition
The principal square root of 100 is
10, because 102 = 100
Thus, โˆ’โˆš100 = โˆ’10
๐‘š
๐‘›
By Rational Exponent โˆš๐‘Ž๐‘š = ๐‘Ž ๐‘›
โˆ’โˆš100 โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  2
2
โˆ’โˆš100 = โˆ’๏ฟฝ102 = โˆ’102 = โˆ’101 = โˆ’10
(Solution 3)
By Definition
No number gives whose square is
โ€“ 16. Thus, โˆšโˆ’16 is not real
numbers.
Remember!
A Square Root of a negative number is
not a real number
(Solution 4)
By Definition
The principal square root of
is
1
1 2
1
, because ๏ฟฝ ๏ฟฝ =
8
8
64
1
64
1
1
=
64 8
ByQuotient rule and Rational Exponent
๐‘š
๐‘Ž โˆš๐‘Ž
๐‘›
๏ฟฝ๐‘Ž๐‘š = ๐‘Ž ๐‘›
๏ฟฝ =
,
๐‘ โˆš๐‘
Thus, ๏ฟฝ
๏ฟฝ
๏ฟฝ
Cheon-Sig Lee
www.coastalbend.edu/lee
1
โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  2
64
1
1
1
1
โˆš1
=
=
= 2=
2
64 โˆš64 โˆš8
8
82
Page 2
Section 10.1 Radical Expressions and Functions
(Solution 5)
By Definition
The principal square root of
is
81
100
9
9 2
81
, because ๏ฟฝ ๏ฟฝ =
10
10
100
81
9
=โˆ’
100
10
By Quotient rule and Rational Exponent
๐‘š
๐‘Ž โˆš๐‘Ž
๐‘›
๏ฟฝ๐‘Ž๐‘š = ๐‘Ž ๐‘›
๏ฟฝ =
,
๐‘ โˆš๐‘
Thus, โˆ’๏ฟฝ
โˆ’๏ฟฝ
81
โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  2
100
81
9
โˆš92
โˆš81
โˆ’๏ฟฝ
=โˆ’
=โˆ’
=โˆ’
2
100
10
โˆš100
โˆš10
(Solution 6)
To find ๐‘“(21), substitute 21 for x
๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 5
๐‘“(21) = โˆš21 โˆ’ 5 = โˆš16 = 4
To find ๐‘“(6), substitute 6 for x
๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 5
๐‘“(6) = โˆš6 โˆ’ 5 = โˆš1 = 1
To find ๐‘“(5), substitute 5 for x
๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 5
๐‘“(5) = โˆš5 โˆ’ 5 = โˆš0 = 0
To find ๐‘“(2), substitute 2 for x
๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 5
๐‘“(2) = โˆš2 โˆ’ 5 = โˆšโˆ’3 =?
Remember!
A Square Root of a negative number is
not a real number
Thus, ๐‘“(2) = โˆšโˆ’3 is not real number
Cheon-Sig Lee
www.coastalbend.edu/lee
Page 3
Section 10.1 Radical Expressions and Functions
(Solution 7)
By Definition
The cube root of 216 is 6, because 63 = 216
3
Therefore, โˆš216 = 6
๐‘š
๐‘›
By Rational Exponent โˆš๐‘Ž๐‘š = ๐‘Ž ๐‘›
3
โˆš216 โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  3
3
3
3
โˆš216 = ๏ฟฝ63 = 63 = 61 = 6
(Solution 8)
By Definition
The cube root of
โˆ’125
โˆ’5
โˆ’5 3 โˆ’125
is
, because ๏ฟฝ ๏ฟฝ =
216
6
6
216
โˆ’125 โˆ’5
=
216
6
By Quotient rule and Rational Exponent
๐‘š
๐‘Ž โˆš๐‘Ž
๐‘›
๏ฟฝ๐‘Ž๐‘š = ๐‘Ž ๐‘›
๏ฟฝ =
,
๐‘ โˆš๐‘
3
Thus, ๏ฟฝ
3
๏ฟฝ
โˆ’125
โŸน ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘’๐‘ฅ ๐‘–๐‘  3
216
3
3
3
โˆ’125 โˆšโˆ’125 ๏ฟฝ(โˆ’5)3 (โˆ’5)3 โˆ’5
๏ฟฝ
= 3
= 3
=
=
3
216
6
โˆš216
โˆš63
63
3
Cheon-Sig Lee
www.coastalbend.edu/lee
Page 4
Related documents