Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The Potential Barrier - Calculations Continuity of the wave function and its first derivative at the boundaries of the barrier. 1) y x=- a 2) y k 'a - k 'a ika : Ce + De = Fe x=a 3) dy dx 4) dy dx : Ae -ika + Be ika = Ce - k 'a + De k 'a : ikAe-ika - ikBeika = k 'Ce- k 'a - k ' Dek 'a x=- a : k 'Ce k 'a - k ' De- k 'a = ikFeika x=a The Potential Barrier - Calculations I want to calculate the transmission coefficient, so I’m going to calculate A as a function of F. Thus, I’m going to eliminate the coefficients C and D. dy 3) dx : ikAe-ika - ikBeika = k 'Ce- k 'a - k ' Dek 'a x=- a ® Ae-ika - Beika = -i kk' Ce- k 'a + i kk' Dek 'a (5) Now let’s add together equation 1 and equation 5. Ae-ika + Beika = Ce- k 'a + Dek 'a Ae-ika - Beika = -i kk' Ce- k 'a + i kk' Dek 'a ® 2Ae-ika = C (1- i kk' ) e- k 'a + D (1+ i kk' ) ek 'a (6) The Potential Barrier - Calculations And from equation 4 4) dy dx : k 'Cek 'a - k ' De- k 'a = ikFeika x=a ® Cek 'a - De- k 'a = i kk' Feika (7) Now let’s add and subtract equation7 and equation 2, where equation 2 2) y k 'a -k 'a ika : Ce + De = Fe x=a The Potential Barrier - Calculations Adding equation 7 and equation 2: 2Cek 'a = (1+ i kk' ) Feika ika e ® C = F2 (1+ i kk' ) k 'a e (8) Subtracting equation 2 from equation 7: 2De- k 'a = (1- i kk' ) Feika ika e ® D = F2 (1- i kk' ) - k 'a e (9) The Potential Barrier - Calculations Let’s substitute these two equations (equations 8 and 9) into equation 6 for the coefficients C and D: ika ika é ù é ù k 'a e e -ika - k 'a F k k' F k k' 2Ae = ê 2 (1+ i k ' ) (1- i k ) k 'a ú e + ê 2 (1- i k ' ) (1+ i k ) k 'a ú e (10) e û e û ë ë And from here we could calculate the transmission coefficient, T, but let’s clean this up a bit. So, (1+ i kk' ) (1- i kk' ) = 1+ i kk' - i kk' +1 = 2 + i kk' - i kk' (1- i kk' ) (1+ i kk' ) = 1- i kk' + i kk' +1 = 2 - i kk' + i kk' The Potential Barrier - Calculations Now equation 10 becomes: 2Ae-ika ika ika éF ù é ù e e = ê 2 (1+ i kk' ) (1- i kk' ) k 'a ú e- k 'a + ê F2 (1- i kk' ) (1+ i kk' ) k 'a ú e k 'a (10) e û e û ë ë 2Ae-ika = F2 eika éë( 2 + i kk' - i kk' ) e-2 k 'a + ( 2 + i kk' - i kk' ) e2 k 'a ùû 2Ae-ika = F2 eika éë 2 ( e-2 k 'a + e2 k 'a ) - i ( kk' - kk' ) e-2 k 'a + i ( kk' - kk' ) e2 k 'a ùû ® 2Ae-ika = F2 eika éë 2 ( e-2 k 'a + e2 k 'a ) + i ( kk' - kk' ) ( e2 k 'a - e-2 k 'a ) ùû What are those functions in parentheses on the right hand side? The Potential Barrier - Calculations From a table of mathematical functions: (e -2 k 'a + e2 k 'a ) 2 2 k 'a -2 k 'a e e ( ) 2 = cosh(2k 'a) = sinh(2k 'a) And finally we have something useful: A = F4 e2ika éë 4 cosh(2k 'a) + 2i ( kk' - kk' ) sinh(2k 'a)ùû (11) The Potential Barrier - Calculations The hyperbolic functions: The Potential Barrier - Calculations The transmission coefficient: 2 1 A A* A = = * T F FF A e éë 4 cosh(2k 'a) + 2i ( kk' - kk' ) sinh(2k 'a) ùû = F 4 A* e-2ika k' k é = 4 cosh(2k 'a) 2i ( k k ' ) sinh(2k 'a) ù * ë û F 4 2ika Now when I multiply these two expressions together the terms involving the complex exponentials multiply to one. The Potential Barrier - Calculations The transmission coefficient: 2 1 A A* A = = * T F FF A e éë 4 cosh(2k 'a) + 2i ( kk' - kk' ) sinh(2k 'a) ùû = F 4 A* e-2ika k' k é = 4 cosh(2k 'a) 2i ( k k ' ) sinh(2k 'a) ù * ë û F 4 2ika Now when I multiply these two expressions together the terms involving the complex exponentials multiply to one. The Potential Barrier - Calculations The transmission coefficient: 2 2 1 A A* A sinh (2k 'a) 2 k' k 2 = = * = cosh (2k 'a) + ( k - k ' ) T F FF 4 And “lastly” from a table of mathematical formulas: cosh2 q - sinh2 q = 1 So that 2 1 A A* A é sinh (2k 'a) ù 2 k' k 2 = = * = ê1+ sinh (2k 'a) + ( k - k ' ) ú T F FF ë 4 û 1 1 k' k 2ù é = 1+ ë1+ 4 ( k - k ' ) û sinh 2 (2k 'a) T 2 The Potential Barrier - Calculations Let’s write the transmission coefficient in terms of the energies: Start with the expression involving the k’s: ( k ') - k ) ( = 2 1 4 ( kk' - ) k 2 k' 4 ( kk ') 2 2 2 4 2 k ') - 2 ( kk ') + k 4 ( = 2 4 ( kk ') and 1+ 14 ( kk' - 1+ 1 4 ( k' k - 4 2 k ') - 2 ( kk ') + k 4 ( ) = 1+ 2 4 ( kk ') k 2 k' ) k 2 k' k ') ( = 4 + 2 ( kk ') + k 2 4 ( kk ') 2 4 4 ( kk ') + ( k ') - 2 ( kk ') + k 4 2 = 4 4 ( kk ') ( k ') + k ) ( = 2 4 ( kk ') 2 2 2 2 2 The Potential Barrier - Calculations The definitions of k and k’: So that: The Potential Barrier - Calculations Putting everything together we get the transmission coefficient: And of course: R = 1- T