Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
(x, y) (- x, y)     (- x, - y) x  cos  y  sin   x  cos   y  sin    x  cos  y   sin   (x, - y) sin   tan    cos  sin     sin   tan        tan   cos   cos  Sect 5.1 Verifying Trig identities Reciprocal 1 sin   csc  1 cos   sec  1 tan   cot  1 cot   tan  1 sec   cos  1 csc   sin  Co-function Pythagorean sin  90     cos  sin 2   cos 2   1 cos  90     sin  tan  90     cot  1  tan 2   sec 2  1  cot 2   csc 2  cot  90     tan  sec  90     csc  csc  90     sec  Quotient sin  tan   cos  cos  cot   sin  Even/Odd sin      sin  cos     cos  tan      tan  cot      cot  sec     sec  csc      csc  If tan     5 and  is in quadrant II, find each function value. 3 (a) sec  Negative answer. What Trig. Identity has tan and sec? sec 2    1  tan 2   sec2    1   53  2 sec    1  2 sec    2 sec    25 9 34 9 (b) sin   Positive answer. What Trig. Identity has tan and sin? sin   y  5 tan      cos  x 3 r 2  x2  y2 r  x2  y2 r  32   5  34 2 34 3 y 5 5 34 sin      r 34 34 S A T C (c) cot    Positive answer. What Trig. Identity has tan and cot? 1 cot    tan   1 cot     tan    cot     1  tan   1 cot       53  1 3 3  5  1 5  5 3 Write cos(x) in terms of tan(x). sec 2    1  tan 2   1 1  tan 2    2 cos   1 cos 2   1  1  tan 2   Secant has a relationship with both tangent and cosine. cos    cos  1 1  tan 2   1  tan 2     1  tan 2   Rationalize the denominator. 1  cot 2 x  Write in terms of sin(x) and cos(x), and simplify the expression so 2 1  csc x  that no quotients appear. csc 2 x   1  cot 2 x   cot 2 x   csc 2 x    cot 2 x  csc 2 x  1  cot 2 x  1  csc 2 x   cot 2 x   1  csc 2 x  1 2 2 csc 2 x    sin x  1 sin x   1    2  2 2 2  cot x  x  cos cos 2  x  sin x  cos x  sin 2  x    sec 2 x  Sect 5.2 Verifying Trig identities Guidelines to follow. 1. Work with one side of the equation at a time. It is often better to work on the most complicated. 2. Look for opportunities to factor, add fractions, square binomials or multiply a binomial by it’s conjugate to create a monomial. 3. Look to use fundamental identities. Look to see what trig functions are in the answer. 4. Convert everything to sines and cosines 5. Always try something! Sect 5.2 Verifying Trig identities Verify. cot   1  csc cos   sin   Work on the right side first. Distribute the cosecant. csc cos   csc sin   1 1 cos   sin   sin   sin   cos  1 sin   cot   1  cot   1 Rewrite to sine and cosine. Simplify the fractions. Quotient Identity for cotangent. Sect 5.2 Verifying Trig identities Verify. tan x 1  cot x   sec x  2 2  2  tan 2 x  csc 2 x  sin x  1  2 2 cos x sin x  2 Work on the left side first. Pythagorean Identity 1 + cot2x = csc2x Rewrite to sine and cosine. Simplify the fractions by canceling . 1 cos 2 x  Reciprocal Identity for secant. sec 2 x   sec 2 x  Sect 5.2 Verifying Trig identities tan    cot    sec 2    csc 2   Verify. sin  cos  tan   cot    sin   cos  sin   cos  sin   cos  cos  sin    sin   cos  sin   cos  Work on the left side first. Rewrite the fraction as subtraction of two fractions with the same denominators. Rewrite to sine and cosine. Simplify the fractions by multiplying by the reciprocals and cancel. sin   1 cos  1    cos  sin   cos  sin   sin   cos  1 1  cos 2   sin 2   sec 2    csc 2    sec 2    csc 2   Reciprocal Identity for secant and cosecant. Sect 5.2 Verifying Trig identities Verify. sec2   1 2  sin  2 sec  tan 2  sec 2  sin 2  cos 2  1 cos 2  sin 2  cos 2   2 cos  1 sin 2   sin 2  Work on the left side first. Pythagorean Identity 1 + tan2x = sec2x tan2x = sec2x – 1 Rewrite to sine and cosine. Rewrite as multiplication. Cancel and Simplify. Sect 5.2 Verifying Trig identities Verify. 2sec2   1 1  1  sin  1  sin  Work on the right side first. Two terms need to be condensed to one term. Find LCD and combine the fractions. LCD  1  sin  1  sin    1 sin 2    1 1  sin   1 1  sin      1  sin   1  sin   1  sin   1  sin   1  sin  1  sin   2 1  sin  1  sin 2  2 1  sin 2  2 1  2 2 cos  cos 2  2 sec 2   2 sec 2  Pythagorean Identity sin2x + cos2x = 1 cos2x = 1 – sin2x Reciprocal of cosine. Sect 5.2 Verifying Trig identities    2 2 2 Verify.  tan   tan   1 cos   1 sec   sin   2 2   1  2  sin    2  cos   sin 2   cos 2   tan 2    tan 2  Work on the right side first. Pythagorean Identities. sin2x + cos2x = 1 cos2x – 1 = – sin2x 1 + tan2x = sec2x  Convert to cosine. Multiply. Sect 5.2 Verifying Trig identities Verify. tan   cot   sec csc sin  cos   cos  sin  sin  sin  cos  cos     cos  sin  sin  cos  sin 2   cos 2  cos  sin  1 cos  sin  1 1  cos  sin  sec csc  sec csc Work on the left side first. Try to combine the two terms into one. Convert to sine and cosine. LCD  cos  sin  Pythagorean Identity sin2x + cos2x = 1 Rewrite as two fractions multiplied together. Reciprocals. Sect 5.2 Verifying Trig identities Verify. cos   sec   tan  1  sin  1 sin   cos  cos  Work on the right side first. Two terms need to be condensed to one term. Convert to sine and cosine. Combine. 1 sin  cos  1  sin    1  sin   1  sin   cos  1  sin   2 cos 1  sin   cos 2  cos 1  sin   cos  cos   1  sin   1  sin   When working with binomials, try multiplying by the conjugate to create differences of squares which will incorporate the Pythagorean Identities. Pythagorean Identity sin2x + cos2x = 1 cos2x = 1 – sin2x Cancel cosine. Sect 5.2 Verifying Trig identities Verify. cot 2  1  sin   1  csc  sin  csc 2   1 1  csc  csc   1csc   1 1  csc  csc  1 1 1 sin  1 sin   sin  sin  1  sin  1  sin   sin  sin  Work on the left side first. Pythagorean Identity and convert to sine and cosine. 1 + cot2x = csc2x cot2x = csc2x – 1 csc2x – 1 is Diff. of Squares. Factor. Cancel (csc x + 1) Convert to sine. Combine to one term. cosA  B, sin A  B Sect 5.3 Sum and Difference Formulas cos B, sin B A cos A, sin A A– B Using Distance Formula A– B x2  x1 2   y2  y1 2 (1,0) B Dist. from (cos(A-B), sin(A-B)) to (1,0) = Dist. from (cosA, sinA) to (cosB,sinB) cos A  B 12  sin  A  B  02  cos A  cos B2  sin A  sin B2 F.O.I.L. F.O.I.L. F.O.I.L. cos  A  B   2 cos A  B   1  sin  A  B   cos A  2 cos A cos B  cos B  sin 2 A  2 sin A sin B  sin 2 B 2 Pythagorean Identity Subtract by 2. 2 Pythagorean Identity Pythagorean Identity 1  2 cos A  B  1 1 2 cos Acos B  1 2 sin Asin B 2  2 cos A B  2  2 cos A cos B  2 sin Asin B – 2 Divide by –2. 2 2 – 2  2 cos A  B  2 cos A cos B  2 sin Asin B 2 2 2 cos A  B  cos A cos B  sin A sin B The Cosine of the Difference of Two Angles The Cosine of the Difference of Two Angles cos A  B  cos A cos B  sin A sin B Substitute (-B) for B in the formula to make the Cosine of the Sum of Two Angle. cos A   B  cos A cos B  sin A sin  B cos (– B) = cos (B) The Cosine of the Sum of Two Angles sin (– B) = – sin (B) cos A  B  cos A cos B  sin A sin B To make the Sine of the Sum & Difference of Two Angles we will need the Cofunction Identities for Sine and Cosine. sin    cos90    cos   sin 90    Start with   A B . sin  A  B  cos90   A  B  cos90  A B  cos90  A  B cos A  B  cos A cos B  sin A sin B cos90  A  B  cos90  Acos B  sin 90  Asin B sin  A  B  sin Acos B  cos Asin B Substitute (-B) for B in the formula to make the Sine of the Sum of Two Angle. sin  A   B  sin A cos B  cos Asin  B cos (– B) = cos (B) sin (– B) = – sin (B) sin  A  B  sin A cos B  cos Asin B To make the Tangent of the Sum & Difference of Two Angles we will need the Quotient Identities for Tangent. sin  A  B  sin A cos B  cos A sin B  cos (A) cos (B) tan  A  B   cos A  B  cos A cos B  sin A sin B This is what we need divide by cos (A) cos (B) all the factors. Tricky manipulation: We want this fraction to have tangents in the formula. Need to divide by the same factor in both the top and bottom to make tangents. Start with where we need to divide by cosine. sin A cos B cos A sin B  tan A  tan B cos A cos B cos A cos B  tan  A  B   cos A cos B sin A sin B 1  tan A tan B  cos A cos B cos A cos B tan A  tan B tan  A  B   1  tan A tan B sin  A  B  sin A cos B  cos A sin B tan  A  B    cos A  B  cos A cos B  sin A sin B This is what we need divide by cos (A) cos (B) all the factors. sin A cos B cos A sin B   cos A cos B cos A cos B  tan A  tan B cos A cos B sin A sin B 1  tan A tan B  cos A cos B cos A cos B tan A  tan B tan  A  B   1  tan A tan B  7 Find the exact value of cos  12  .  cos105  cos60  45 cos A  B  cos A cos B  sin A sin B 7 7180   715  105 12 12 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. cos60  45  cos60cos45  sin 60sin 45 2 1 45 1 1 2 3 2     2 2 2 2 2 6 2 6    4 4 4 1 60 2 30 3  5    . Find the exact value of cos  3 4  2 1 60 2   3 45 5 5180   560  300 3 3  4 1 1 30 cos A  B  cos A cos B  sin A sin B  45 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. cos300  45  cos300cos45  sin 300sin 45 3  2   1  2           2  2   2  2  2 6 2 6    4 4 4 Suppose that sin    for a Q2 angle  and sin    for a 13 5 Q1 angle  . Find the exact value of each of the following. A. cos  B. cos  C. cos    D. cos    12 3 cos     cos  cos   sin  sin  12 13  5   4 5 cos   3 5 13 cos   4 5   5  4   12  3          13  5   13  5   20 36  56    65 65 65 cos     cos  cos   sin  sin    5  4   12  3          13  5   13  5    20 36 16   65 65 65 Find the exact value of sin 75 . sin 75  sin 30  45 sin  A  B  sin A cos B  cos Asin B Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. sin 30  45  sin 30cos45  cos30sin 45 2 1 45 1 1 2 3 2     2 2 2 2 2 6 2 6    4 4 4 1 60 2 30 3 Find the exact value of 60  2 1 30  3 2  1  7  tan   .  12  7 7180   715  105 12 12 150  45  105 45 1 tan A  tan B tan  A  B   1  tan A tan B Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. 1 1  1  1 tan 150  tan 45 3 3 tan 150  45    1  tan 150 tan 45 1  1  1  1   1 3 3  1 3  1  3   3 3 1  3 1 1  3 3 1 3      3 1 3 1 1 1  3 3 1 1 3  3 3 3     Find the exact value of 2 30  60 1 3 2   7  tan   .  12  45 7 7180   715  105 12 12 60  45  105 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. 1 1 tan A  tan B tan  A  B   1  tan A tan B tan 60  tan 45 tan  60  45   1  tan 60 tan 45 Another approach.  3 1 1  3  1 1 3  1 3 Find the exact value of sin 40cos160  cos40sin 160. sin  A  B  sin A cos B  cos Asin B sin 40 160  sin  120 1 60 120  3 30 2 3  2 Sect 5.5 Dble Angle, Power Reducing, and Half Angle Formulas Double Angle Formulas: Revise the Sum of Sin, Cos, & Tan Formulas Substitute A in for B. sin  A  B  sin A cos B  cos Asin B sin  A  A  sin A cos A  cos Asin A => sin cos A  B  cos A cos B  sin A sin B cos A  A  cos A cos A  sin A sin A   cos2 A  1  sin 2 A  sin 2 A  2 A  2 sin A cos A  cos2 A  cos 2 A  sin 2 A  cos2 A  1  2 sin 2 A   cos2 A  2 cos 2 A  1 cos2 A  cos 2 A  1  cos 2 A tan A  tan B tan  A  B   1  tan A tan B tan A  tan A tan  A  A  1  tan A tan A 2 tan A  tan 2 A  1  tan 2 A Find sin  2  ,cos  2  , tan  2  5 given cos   and 13 120   12  5   2      sin 2   2 sin  cos 13 169   13  119  5    12    cos2   cos 2   sin 2       169  13   13    12  2  2 tan  5    120 tan 2    2 119 1  tan 2    12  1    5  2 2 Quadrant 4. 3    2 . 2  y  132  52  12  12 sin    13 tan     12 5 5 13  12 Quadrant 2. Find the values of the six trigonometric functions of  if cos2   and 90    180. cos2   cos 2    sin 2   Choose one of the double angle identities to find a value for sine or cosine. cos2   1  2 sin 2   10 1 cos2   2 cos 2    1 cos2   1  2 sin   Substitute in 4/5. 4 2  1  2 sin   5 Subtract by 1. 2 1   2 sin 2   5 1  sin 2   10 1   sin   10 sin    4 5 1 10  10 10 2 10  12  3 SOH-CAH-TOA cos    3  3 10  10 10 tan    1 3 Divide by -2. cot    3 Square root both sides, but the answer will be positive, since we are Q2. sec   10 3 csc   10  Verify. cot   sin 2   1  cos2  cos   sin 2  sin  cos   2 sin   cos  sin   2 cos 2   1  cos2   1  cos2  Work on the left side first. Convert to sine and cosine with Quotient Identity. Double angle identity. 2sin(x) cos(x) = sin(2x) Cancel Rewrite the double angle formula. 2cos2x – 1 = cos(2x) 2cos2x = 1 + cos(2x) sin 2 A  2 sin A cos A cos    sin    cos2  2 2 cos 2 7 x   sin 2 7 x   cos2  7 x   cos14 x  1  2  sin 15 cos15 2 1  sin 2 15 2 1 1 1 1  sin 30    2 2 2 4 Find an identity for cos3  cos  2  cos A  B  cos A cos B  sin A sin B Substitute Dble angle Identity. cos  2   cos ( cos2)  sin  ( sin 2 )   cos  2   cos  (2 cos 2   1)  sin (2 sin  cos  ) cos   2   2cos3   cos  2sin 2  cos Pythagorean Identity, rewrite with all cosines. cos   2   2 cos3   cos   2 1  cos 2   cos  cos   2   2 cos3   cos   2 cos  1  cos 2   Distribute cos   2   2cos3   cos  2cos  2cos3   4 cos3   3cos  cos 3  4 cos3   3cos  Product to Sum & Sum to Product Formulas How to create the Product to Sum Formulas. Add and subtract Sum and Difference formulas for Sine and Cosine. cos A cos B  sin A sin B  cos A  B   cos A cos B  sin A sin B  cos A  B 2 cos A cos B  cos A  B  cos A  B cos A cos B  1 cos A  B   cos A  B  2 sin A cos B  cos Asin B  sin  A  B   sin A cos B  cos Asin B  sin  A  B 2 sin A cos B  sin  A  B  sin  A  B 1 sin A cos B  sin  A  B   sin  A  B  2 cos A cos B  sin A sin B  cos A  B   cos A cos B  sin A sin B  cos A  B 2 sin A sin B  cos A  B  cos A  B sin A sin B  1 cos A  B   cos A  B  2 sin A cos B  cos Asin B  sin  A  B   sin A cos B  cos Asin B  sin  A  B 2 cos A sin B  sin  A  B  sin  A  B 1 cos A sin B  sin  A  B   sin  A  B  2 Product to Sum Formulas cos A cos B  12 cos A  B   cos A  B  sin A cos B  12 sin  A  B   sin  A  B  sin A sin B  12 cos A  B   cos A  B  cos A sin B  12 sin  A  B   sin  A  B  Sum to Product Formulas cos A cos B  12 cos A  B   cos A  B  2 cos A cos B  cos A  B  cos A  B  x y Let A     2  The reason we choose these two fractions for A and B is because we need two values that add up to x and two values that subtract to be y.  x y and B     2   x  y   x  y   x  y   x  y   x y  x y 2 cos cos  cos     cos               2   2   2   2   2   2   x y  x y 2 cos  cos   cos y   cos x   2   2   A B   A B  cos A  cos B  2 cos  cos   2   2  Product to Sum Formulas cos A cos B  12 cos A  B   cos A  B  sin A cos B  12 sin  A  B   sin  A  B  sin A sin B  12 cos A  B   cos A  B  cos A sin B  12 sin  A  B   sin  A  B  Sum to Product Formulas  A B   A B  cos A  cos B  2 cos  cos  2 2      A B   A B  sin A  sin B  2 sin   cos   2   2   A B   A B  sin A  sin B  2 sin   cos  2 2      A B   A B  cos A  cos B  2 sin   sin   2 2     Rewrite sin  6 x  cos  2 x  as a sum or difference of two functions sin A cos B  12 sin  A  B   sin  A  B  sin 6 x  2 x  sin 6 x  2 x  12 sin 8x   sin 4 x  sin 6 x  cos2 x   1 2 Rewrite cos 4x  cos 3x using sums to product identity.  A B   A B  cos A  cos B  2 sin   sin    2   2   4 x  3x   4 x  3x  cos4 x   cos3x   2 sin   sin   2 2      7x   x   2 sin   sin    2  2 Half Angle Formulas cos  2 A  1  2sin 2  A cos  2 A  2cos2  A 1 2sin 2  A  1  cos  2 A 1  cos  2 A cos  A  2 1  cos  2 A sin  A  2 2 Let A   2 1  cos   sin   2 2  2     sin  2  tan     2  cos  2    tan     2 1  cos  2 A cos  A    2 tan     Let A  2 2 2 cos  2  1  cos  2 1 cos   2 1 cos   2 1 cos  2 1 cos  2 1  cos  tan   2 1  cos   The + symbol in each formula DOES NOT mean there are 2 answers, instead it indicates that you must determine the sign of the trigonometric functions based on which quadrant the half angle falls in. 1  cos  tan   2 1  cos     1  cos 1  cos  1  cos 1  cos  1  cos 2   1  cos 2 1  cos 2   sin 2   1  cos  tan  2 sin    1  cos  tan   2 1  cos     1  cos 1  cos  1  cos 1  cos  1  cos     2 1  cos 2 sin 2   1  cos 2 sin   tan  2 1  cos   Find the exact value for cos112.5.  1  cos   225  cos   cos112.5  cos  2 2 2   S A T C  2 2 2  1      2  225 1  cos225 2  cos    2 2  2 2 2 2 2 2 2 2 2   4 2 1  cos 2 sin 2 1  1  2 sin 2   2 sin  cos  Verify the identity. tan    2 sin 2   2 sin  cos  tan   sin  cos