* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download slides pdf - Auburn University
Tissue engineering wikipedia , lookup
Cell nucleus wikipedia , lookup
Signal transduction wikipedia , lookup
Cell membrane wikipedia , lookup
Programmed cell death wikipedia , lookup
Cell growth wikipedia , lookup
Extracellular matrix wikipedia , lookup
Cell encapsulation wikipedia , lookup
Cellular differentiation wikipedia , lookup
Cell culture wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
Cytokinesis wikipedia , lookup
Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • What are the main tenets of cell theory? • What are the major lines of evidence that all presently living cells have a common origin? . Cell theory  All living organisms are composed of cells  smallest “building blocks” of all multicellular organisms  all cells are enclosed by a surface membrane that separates them from other cells and from their environment  specialized structures with the cell are called organelles; many are membrane-bound . Cell theory  Today, all new cells arise from existing cells  All presently living cells have a common origin  all cells have basic structural and molecular similarities  all cells share similar energy conversion reactions  all cells maintain and transfer genetic information in DNA  the genetic code is essentially universal . • What are the main tenets of cell theory? • What are the major lines of evidence that all presently living cells have a common origin? . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • What is surface area to volume ratio, and why is it an important consideration for cells? • What (usually) happens to surface area to volume ratio as cells grow larger? . Cell organization and homeostasis  Plasma membrane surrounds cells and separates their contents from the external environment  Cells are heterogeneous mixtures, with specialized regions and structures (such as organelles) . Cell organization and homeostasis  Cell size is limited surface area to volume ratio puts a limit on cell size   food and/or other materials must get into the cell  waste products must be removed from the cell  cells need a high surface area to volume ratio  BUT volume increases faster than surface area as cells grow larger…so cells usually must divide . Fig. 5.4 . . Cell organization and homeostasis  cell shape varies depending both on function and surface area requirements . • What is surface area to volume ratio, and why is it an important consideration for cells? • What (usually) happens to surface area to volume ratio as cells grow larger? . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • Compare and contrast: – LM and EM – SEM and TEM • Include the terms resolution and magnification in your discussions. . Studying cells – microscopy Most cells are large enough to be resolved from each other with light microscopes (LM)  cells were discovered by Robert Hooke in 1665    he saw the remains of cell walls in cork with a LM  his microscope had about 30x magnification modern LMs can reach up to 1000x . Fig. 5.2a . Fig. 5.2b . Fig. 5.2c . Studying cells – microscopy  LM resolution is limited  LM resolution (clarity) is limited  about 1 mm  due to the wavelength of visible light  only about 500 times better than the human eye, even at maximum magnification  small cells (such as most bacteria) are ~1 mm across, just on the edge of resolution  modifications of LMs and some treatments of cells allow observation of subcellular structure in some cases . Studying cells – microscopy Resolution of most subcellular structure requires electron microscopy (EM)   electrons have a much smaller wavelength than light (resolve down to under 1 nm)  magnification up to 250,000x or more  resolution over 500,000 times better than the human eye . Transmission electron microscope Light microscope Scanning electron microscope Electron gun Electron beam Light beam Second condenser lens First condenser lens (magnet) Ocular lens Specimen Scanning coil Projector lens (magnet) Final (objective) lens Cathode ray tube synchronized with scanning coil Objective lens Specimen Condenser lens Secondary electrons Light source Specimen Film or screen (a) (b) (c) Electron detector Studying cells – microscopy transmission electron microscopy (TEM)   electron passes through sample  need very thin samples (100 nm or less thick)  samples embedded in plastic and sliced with a diamond knife . Studying cells – microscopy scanning electron microscopy (SEM)   samples are gold-plated  electrons interact with the surface  images have a 3-D appearance . . • Compare and contrast: – LM and EM – SEM and TEM • Include the terms resolution and magnification in your discussions. . • Which is SEM, and which TEM? How can you tell? . • Describe cell fractionation. Why is it done, and how is it done? Include the terms lyse, centrifugation, pellet, and supernatant in your discussion. . Studying cells – fractionation  Cells can be broken and fractionated to separate cellular components  cells are broken (lysed) by disrupting the cell membrane, often using some sort of detergent  grinding and other physical force may be required, especially if cell walls are present  centrifugation is used to separate cellular components . Studying cells – fractionation centrifugation is used to separate cellular components   samples are spun at high speeds  results in a centrifugal force thousands to hundreds of thousands times “normal” gravity  after spinning:  pellet – what gets packed down to the bottom (densest material)  supernatant – solution above the pellet . Studying cells – fractionation cell components will end up in either the pellet or the supernatant depending on their individual properties and the details of the centrifugation   intact membrane-bound organelles often wind up in pellets (denser once first)  special treatments can determine whether a component ends up in the pellet or supernatant . Studying cells – fractionation density gradients can be used to subdivide pellet components   based on their density  can be used to better separate similar organelles from each other, for example Golgi complex from ER . • Describe cell fractionation. Why is it done, and how is it done? Include the terms lyse, centrifugation, pellet, and supernatant in your discussion. . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • How do prokaryotic cells and eukaryotic cells differ from each other in typical size and general organization? • Describe cytoplasm, cytosol, nucleoplasm, and the general role of membranes in cells. . Eukaryotic vs. prokaryotic cells prokaryotic cells do not have internal membranes (thus no nuclear membrane)   main DNA molecule (chromosome) is typically circular; its location is called the nuclear area  other small DNA molecules (plasmids) are often present, found throughout the cell . Eukaryotic vs. prokaryotic cells prokaryotic cells   plasma membrane is typically enclosed in a cell wall  often the cell wall is covered with a sticky layer of proteins and/or sugars called a capsule  do not completely lack organelles; have:  plasma membrane  ribosomes  generally just called bacteria  prokaryotic cells are typically 1-10 mm in diameter . Eukaryotic vs. prokaryotic cells  eukaryotic cells have internal membranes and a distinct, membraneenclosed nucleus  typically 10-100 mm in diameter . • How do prokaryotic cells and eukaryotic cells differ from each other in typical size and general organization? • Describe cytoplasm, cytosol, nucleoplasm, and the general role of membranes in cells. . • List as many organelles as you can think of. Describe their structures and key functions. • Draw and label a typical animal cell and a typical plant cell, including organelles. . . . • List as many organelles as you can think of. Describe their structures and key functions. • Draw and label a typical animal cell and a typical plant cell, including organelles. . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell .  How do proteins get outside of a cell?  How do proteins get into a cell membrane?  How does a cell digest its food?  How does a cell commit suicide?  Why would a cell commit suicide? . • Describe the nuclear envelope, nuclear pores, chromatin, chromosomes, and nucleoli in terms of structures and key functions. • Name something that you KNOW must get out of the nucleus for cells to function. . Compartments in eukaryotic cells  two general regions inside the cell: cytoplasm and nucleoplasm cytoplasm – everything outside the nucleus and within the plasma membrane    contains fluid cytosol and organelles nucleoplasm – everything within the nuclear membrane . Compartments in eukaryotic cells  membranes separate cell regions  have nonpolar regions that help form a barrier between aqueous region  allow for some selection in what can cross a membrane (more details later) . nucleus – the control center of the cell  typically large (~5 mm) and singular  nuclear envelope  double membrane surrounding the nucleus  nuclear pores – protein complexes that cross both membranes and regulate passage . nucleus – the control center of the cell chromatin – DNA-protein complex   have granular appearance; easily stained for microscopy (“chrom-” = color)  “unpacked” DNA kept ready for message transcription and DNA replication  proteins protect DNA and help maintain structure and function  chromosomes – condensed or “packed” DNA ready for cell division (“-some” = body) . nucleus – the control center of the cell nucleoli – regions of ribosome subunit assembly   appears different due to high RNA and protein concentration (no membrane)  ribosomal RNA (rRNA) transcribed from DNA there  proteins (imported from cytoplasm) join with rRNA at a nucleolus to form ribosome subunits  ribosome subunits are exported to the cytoplasm through nuclear pores (note singular: nucleolus; plural: nucleoli) . • Describe the nuclear envelope, nuclear pores, chromatin, chromosomes, and nucleoli in terms of structures and key functions. • Name something that you KNOW must get out of the nucleus for cells to function. . • Describe the structure and function of ribosomes. . ribosomes – the sites of protein synthesis ribosomes are granular bodies with three RNA strands and about 75 associated proteins   two main subunits, large and small  perform the enzymatic activity for forming peptide bonds, and serve as the sites of translation of genetic information into protein sequences . ribosomes – the sites of protein synthesis  prokaryotic ribosome subunits are both smaller than the corresponding subunits in eukaryotes  in eukaryotes  the two main subunits are formed separately in the nucleolus and transported separately to the cytoplasm  some are free in the cytoplasm while others are associated with the endoplasmic reticulum (ER) . • Describe the structure and function of ribosomes. . • What is the endomembrane system (include organelle components)? . • Diagram the cisternal maturation model for the Golgi. • Diagram and describe the pathway from synthesis to final destination for a secreted protein. Then do the same for a plasma membrane protein. • Describe the structure and function of: - ER - vesicles - vacuoles - Golgi apparatus - microbodies in general - lysosomes - peroxisomes - glyoxysomes . endomembrane system endomembrane system – a set of membranous organelles that interact with each other via vesicles   includes ER, Golgi apparatus, vacuoles, lysosomes, microbodies, and in some definitions the nuclear membrane and the plasma membrane . endomembrane system endoplasmic reticulum (ER) – membrane network that winds through the cytoplasm   winding nature of the ER provides a lot of surface area  many important cell reactions or sorting functions require ER membrane surface  ER lumen – internal aqueous compartment in ER  separated from the rest of the cytosol  typically continuous throughout ER and with the lumen between the nuclear membranes  enzymes within lumen and imbedded in lumen side of ER differ from those on the other side, thus dividing the functional regions . endomembrane system  smooth ER – primary site of lipid synthesis, many detoxification reactions, and sometimes other activities  rough ER – ribosomes that attach there insert proteins into the ER lumen as they are synthesized . endomembrane system rough ER – ribosomes that attach there insert proteins into the ER lumen as they are synthesized  ribosome attachment directed by a signal peptide at the amino end of the polypeptide (see Ch. 17.4, p.326)   a protein/RNA signal recognition particle (SRP) binds to the signal peptide and pauses translation  at the ER the assembly binds to an SRP receptor protein  SRP leaves, protein synthesis resumes (now into the ER lumen), and the signal peptide is cut off . endomembrane system  proteins inserted into the ER lumen may be membrane bound or free  proteins are often modified in the lumen (example, carbohydrates or lipids added)  proteins are transported from the ER in transport vesicles  vesicles – small, membrane-bound sacs  buds off of an organelle (ER or other)  contents within the vesicles (often proteins) transported to another membrane surface  vesicles fuses with membranes, delivering contents to that organelle or outside of the cell . Fig. 5.16d (TEArt) Protein Vesicle budding from rough endoplasmic reticulum Migrating transport vesicle Fusion of vesicle with Golgi apparatus Ribosome . endomembrane system Golgi apparatus (AKA Golgi complex) – a stack of flattened membrane sacs (cisternae) where proteins further processed, modified, and sorted [the “post office” of the cell]   not contiguous with ER, and lumen of each sac is usually separate from the rest  has three areas: cis, medial, and trans . endomembrane system  cis face: near ER and receives vesicles from it; current model (cisternal maturation model) holds that vesicles actually coalesce to continually form new cis cisternae  medial region: as a new cis cisterna is produced, the older cisternae mature and move away from the ER   in this region proteins are further modified (making glycoproteins and/or lipoproteins where appropriate, and )  maturing cisternae may make other products; for example, many polysaccharides are made in the Golgi  some materials are needed back a the new cis face and are transported there in vesicles trans face: nearest to the plasma membrane; a fully matured cisterna breaks into many vesicles that are set up to go to the proper destination (such as the plasma membrane or another organelle) taking their contents with them . endomembrane system . endomembrane system lysosomes – small membrane-bound sacs of digestive enzymes   serves to confine the digestive enzymes and their actions  allows maintenance of a better pH for digestion (often about pH 5)  formed by budding from the Golgi apparatus; special sugar attachments to hydrolytic enzymes made in the ER target them to the lysosome . endomembrane system lysosomes – small membrane-bound sacs of digestive enzymes  used to degrade ingested material, or in some cases dead or damaged organelles   ingested material is found in vesicles that bud in from the plasma membrane; the complex molecules in those vesicles is then digested  can also fuse with dead or damaged organelles and digest them  digested material can then be sent to other parts of the cell for use  found in animals, protozoa; debatable in other eukaryotes, but all must have something like a lysosome . endomembrane system vacuoles – large membrane-bound sacs that perform diverse roles; have no internal structure   distinguished from vesicles by size  in plants, algae, and fungi, performs many of the roles that lysosomes perform for animals  central vacuole – typically a single, large sac in plant cells that can be 90% of the cell volume  usually formed from fusion of many small vacuoles in immature plant cells  storage sites for water, food, salts, pigments, and metabolic wastes  important in maintaining turgor pressure  tonoplast – membrane of the plant vacuole  food vacuoles – present in most protozoa and some animal cells; usually bud from plasma membrane and fuse with lysosomes for digestion  contractile vacuoles – used by many protozoa for removing excess water . endomembrane system microbodies – small membranebound organelles that carry out specific cellular functions; examples:   lysosomes could be consider a type of microbody  peroxisomes – sites of many metabolic reactions that produce hydrogen peroxide (H2O2), which is toxic to the rest of the cell   peroxisomes have enzymes to break down H2O2, protecting the cell  peroxisomes are abundant in liver cells in animals and leaf cells in plants  normally found in all eukaryotes  example: detoxification of ethanol in liver cells occurs in peroxisomes glyoxysomes – in plant seeds, contains enzymes that convert stored fats into sugar . • What is the endomembrane system (include organelle components)? . • Diagram the cisternal maturation model for the Golgi. • Diagram and describe the pathway from synthesis to final destination for a secreted protein. Then do the same for a plasma membrane protein. • Describe the structure and function of: - ER - vesicles - vacuoles - Golgi apparatus - microbodies in general - lysosomes - peroxisomes - glyoxysomes . Energy Converting Organelles  energy obtained from the environment is typically chemical energy (in food) or light energy  mitochondria are the organelles where chemical energy is placed in a more useful molecule  chloroplasts are plastids where light energy is captured during photosynthesis . • Draw a mitochondrion in cross-section and describe its structure and functions. . Energy Converting Organelles  mitochondria – the site of aerobic respiration  recall aerobic respiration: sugar + oxygen  carbon dioxide + water + energy  the “energy” is actually stored in ATP . Energy Converting Organelles mitochondria mitochondria have a double membrane    space between membranes = intermembrane space  inner membrane is highly folded, forming cristae; provides a large surface area  inner membrane is also a highly selective barrier  the enzymes that conduct aerobic respiration are found in the inner membrane inside of inner membrane is the matrix, analogous to the cytoplasm of a cell . Energy Converting Organelles – mitochondria  mitochondria have their own DNA, and are inherited from the mother only in humans  mitochondria have their own division process, similar to cell division; each cell typically has many mitochondria, which can only arise from mitochondrial division  some cells require more mitochondria than others  mitochondria can leak electrons into the cell, allowing toxic free radicals to form  mitochondria play a role in initiating apoptosis (programmed cell death) . • Draw a mitochondrion in cross-section and describe its structure and functions. . • Draw a chloroplast in cross-section and describe its structure and functions. . Energy Converting Organelles plastids – organelles of plants and algae that produce and store food   include amyloplasts (for starch storage), chromoplasts (for color, often found in petals and fruits), and chloroplasts (for photosynthesis)  like mitochondria, have their own DNA (typically a bit larger and more disk-shaped than mitochondria, however)  derive from undifferentiated proplastids, although role of mature plastids can sometimes change  numbers and types of plastids vary depending on the organism and the role of the cell . Energy Converting Organelles – plastids (chloroplasts) chloroplasts get their green color from chlorophyll, the main light harvesting pigments involved in photosynthesis  carbon dioxide + water + light energy  food (glucose) + oxygen chloroplasts have a double membrane   the region within the inner membrane is the stroma; it is analogous to the mitochondrial matrix  inner membrane is contiguous with an interconnected series of flat sacks called thylakoids that are grouped in stacks called grana  the thylakoids enclose aqueous regions called the thylakoid lumen  chlorophyll is found in the thylakoid membrane, and the reactions of photosynthesis take place there and in the stroma  carotenoids in the chloroplast serve as accessory pigments for photosynthesis . • Draw a chloroplast in cross-section and describe its structure and functions. . • Describe the endosymbiont theory. Include evidence for it, including predictions that have proven true. . Energy Converting Organelles endosymbiont theory  mitochondria and plastids evolved from prokaryotic cells that took residence in larger cells and eventually lost their independence  the cells containing the endosymbionts became dependent upon them for food processing, and in turn provide them with a protected and rich environment (a mutualistic relationship) . Energy Converting Organelles endosymbiont theory supporting evidence   the size scale is right - mitochondria and plastids are on the high end of the size of typical bacteria  endosymbionts also have their own DNA and their own “cell” division; in many ways they act like bacterial cells  the DNA sequence and arrangement (circular chromosomes)of endosymbionts is closer to that of bacteria than to that found in the eukaryotic nucleus  endosymbionts have their own ribosomes, which are much like bacterial ribosomes  there are other known, more modern endosymbiotic relationships: algae in corals, bacteria within protozoans in termite guts . Energy Converting Organelles endosymbiont theory  some genes appear to have been shuttled out of the endosymbionts to the nucleus  many of the proteins used by endosymbionts are actually encoded by nuclear genes and translated in the cytoplasm (or on rough ER) and transported to the endosymbionts  DNA sequencing of endosymbionts is being used to trace the evolutionary history of the endosymbionts  appears that endosymbiosis began about 1.5 to 2 billion years ago (around when the first eukaryotic cells appeared)  mitochondria appear to have a monophyletic origin (one initial endosymbiotic event, giving rise to all mitochondria in eukaryotic cells today)  plastids appear to have a polyphyletic origin (more than one initial endosymbiotic event giving rise to different plastid lines present today in algae and plants) . • Describe the endosymbiont theory. Include evidence for it, including predictions that have proven true. . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • What are the functions of the cytoskeleton? • What are the three main types of cytoskeleton? Describe the structure and function(s) of each type. . • Describe the structure and function(s) of: – – – – – motor proteins MTOCs centrosomes centrioles cilia and flagella . Cytoskeleton eukaryotic cells typically have a size and shape that is maintained   the cytoskeleton is a dense network of protein fibers that provides needed structural support  the network also has other functions   a scaffolding for organelles  cell movement and cell division (dynamic nature to the protein fibers is involved here)  transport of materials within the cell the cytoskeleton is composed of three types of protein filaments: microtubules, microfilaments, and intermediate filaments . . microtubules are the thickest filaments of the cytoskeleton  hollow, rod -shaped cylinders about 25 nm in diameter  made of a-tubulin and b-tubulin dimers  dimers can be added or removed from either end (dynamic nature)  one end (plus end) adds dimers more rapidly than the minus end  can be anchored, where an end is attached to something and can no longer add or lose dimers . microtubule-organizing centers (MTOCs) serve as anchors centrosome in animal cells   centrosome has two centrioles in a perpendicular arrangement  centrioles have a 9x3 structure: 9 sets of 3 attached microtubules forming a hollow cylinder  used for assembly of microtubules for use throughout the cell . microtubule-organizing centers (MTOCs) serve as anchors  centrioles are duplicated before cell division  play an organizing role for microtubule spindles in cell division  other eukaryotes must use some alternative MTOC during cell division; still incompletely described . microtubules are involved in moving organelles  motor proteins (such as kinesin or dynein) attach to organelle and to microtubule  using ATP as an energy source, the motor proteins change shape and thus produce movement  microtubule essentially acts as a track for the motor protein  motor proteins are directional; kinesin moves toward the plus end, dynein away from it . cilia and flagella are made of microtubules  thin, flexible projections from cells  used in cell movement, or to move things along the cell surface  share the same basic structure; called cilia if short (2-10 mm typically) and flagella if long (typically 200 mm)  central stalk covered by cell membrane extension, and anchored to a basal body  9x3 structure stalk has two inner microtubules surrounded by nine attached pairs of microtubules   9+2 arrangement . cilia and flagella are made of microtubules stalk has two inner microtubules surrounded by nine attached pairs of microtubules   9+2 arrangement  dynein attached to the outer pairs actually fastens the pair to its neighboring pair  dynein motor function causes relative sliding of filaments; this produces bending movement of the cilium or flagellum . microfilaments are solid filaments about 7 nm in diameter  composed of two entwined chains of actin monomers  linker proteins cross-link the actin chains with each other and other actin associated proteins  actin monomers can be added to lengthen the microfilament or removed to shorten it; this can be used to generate movement . microfilaments are solid filaments about 7 nm in diameter  important in muscle cells; in conjunction with myosin, they are responsible for muscle contraction  used for many cell movements such as:  contractile structures  forming cell extensions  “pinching in” during cell division . intermediate filaments  typically just a bit wider than microfilaments, this is the catch-all group for cytoskeletal filaments composed of a variety of other proteins  the types of proteins involved differ depending on cell types and on the organism; apparently limited to animal cells and protozoans . intermediate filaments  not easily disassembled, thus more permanent  a web of intermediate filaments reinforces cell shape and positions of organelles (they give structural stability)  prominent in cells that withstand mechanical stress  form the most insoluble part of the cell . • What are the functions of the cytoskeleton? • What are the three main types of cytoskeleton? Describe the structure and function(s) of each type. . • Describe the structure and function(s) of: – – – – – motor proteins MTOCs centrosomes centrioles cilia and flagella . Chapter 6: A Tour of the Cell  Cell theory  Cell organization and homeostasis  Studying cells – microscopy and fractionation  Eukaryotic vs. prokaryotic cells  Compartments in eukaryotic cells (cell regions, organelles)  Cytoskeleton  Outside the cell . • Describe the outer part and outside interface of a: – – – – • typical prokaryotic cell typical plant cell typical fungal cell typical animal cell Diagram and describe the animal cell glycocalyx and ECM interaction (include collagen, fibronectin, and integrin). . Outside the Cell  Most prokaryotes have a cell wall, an outer envelope, and a capsule (capsule is also called glycocalyx or cell coat)  Most eukaryotic cells produce materials that are deposited outside the plasma membrane but that remain associated with it . Outside the Cell  plants have thick, defined cell walls made primarily of crosslinked cellulose fibers  growing plant cells secrete a primary cell wall, which is thin and flexible  growth ends  primary cell wall is usually thickened and solidified  often a secondary cell wall is then produced between the primary cell wall and the plasma membrane  still contains cellulose  typically has more strengthening material (for example, lignin in wood) . Outside the Cell  fungi typically have thinner cell walls than plants, made primarily of cross-linked chitin fibers . Outside the Cell animals do not have cell walls, but their cells secrete varying amounts of compounds that can produce a glycocalyx and an extracellular matrix (ECM)  glycocalyx: polysaccharides attached to proteins and lipids on the outer surface of the plasma membrane   typically functions in cell recognition and communication, cell contacts, and structural reinforcement  often works through direct interaction with the ECM . Outside the Cell ECM: a gel of carbohydrates and fibrous proteins; several different molecules can be involved   main structural protein is tough, fibrous collagen  fibronectins are glycoproteins in the ECM that often bind to both collagen and integrins  integrins are proteins in the plasma membrane that typically receive signals from the ECM . • Describe the outer part and outside interface of a: – – – – • typical prokaryotic cell typical plant cell typical fungal cell typical animal cell Diagram and describe the animal cell glycocalyx and ECM interaction (include collagen, fibronectin, and integrin). .
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            